Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes

Liver segmentation from scans of the abdominal area is an important step in several diagnostic processes. CT scans of the abdominal area contain several organs in close proximity exhibiting similar image characteristics. In this paper, we present preliminary results on an algorithm that uses Markov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alomari, R.S., Kompalli, S., Chaudhary, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue
container_start_page 293
container_title
container_volume
creator Alomari, R.S.
Kompalli, S.
Chaudhary, V.
description Liver segmentation from scans of the abdominal area is an important step in several diagnostic processes. CT scans of the abdominal area contain several organs in close proximity exhibiting similar image characteristics. In this paper, we present preliminary results on an algorithm that uses Markov random fields to obtain an initial contour of the liver. Gradient vector fields (GVF) and active contours are used to refine the initial estimate and segment the liver. Tests are reported on 13 clinical cases using a similarity metric that combines area and space.
doi_str_mv 10.1109/CISIS.2008.135
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4606695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4606695</ieee_id><sourcerecordid>4606695</sourcerecordid><originalsourceid>FETCH-LOGICAL-i215t-649617736297cef04604366a6fbe391c0d7221c4b04362f692bfca1bbac4b5fa3</originalsourceid><addsrcrecordid>eNotkD1rwzAURQUl0JB67dLl_QG7kixL1hhMkxocCnXSoUuQ7adUjT-KbQL991VI73LhHLjDJeSR0Ygxqp-zvMzLiFOaRixO7kigVUqV1EnsLV2QJadKC6aZuCfBNH1TnyRJqWBL8lniqcN-NrMbehgszF8IhbvgCHYcOlhXzdC53rSQ7eEwuf4EOzOehwu8m94r2DhsG9gNDbbgCWw_NlD25ozTA1lY004Y_PeKHDYv--w1LN62ebYuQsdZModSaMmUiiXXqkZLhaQiltJIW2GsWU0bxTmrRXXF3ErNK1sbVlXGs8SaeEWebrsOEY8_o-vM-Hv0M_J6wR_xelEu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alomari, R.S. ; Kompalli, S. ; Chaudhary, V.</creator><creatorcontrib>Alomari, R.S. ; Kompalli, S. ; Chaudhary, V.</creatorcontrib><description>Liver segmentation from scans of the abdominal area is an important step in several diagnostic processes. CT scans of the abdominal area contain several organs in close proximity exhibiting similar image characteristics. In this paper, we present preliminary results on an algorithm that uses Markov random fields to obtain an initial contour of the liver. Gradient vector fields (GVF) and active contours are used to refine the initial estimate and segment the liver. Tests are reported on 13 clinical cases using a similarity metric that combines area and space.</description><identifier>ISBN: 9780769531090</identifier><identifier>ISBN: 0769531091</identifier><identifier>DOI: 10.1109/CISIS.2008.135</identifier><identifier>LCCN: 207941914</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; Computed tomography ; Current transformers ; database construction ; evaluation ; Fault currents ; GVF Snakes ; Image segmentation ; Liver ; liver segmentation ; Markov Random Fields ; Pixel ; X-ray CT</subject><ispartof>2008 International Conference on Complex, Intelligent and Software Intensive Systems, 2008, p.293-298</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4606695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4606695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alomari, R.S.</creatorcontrib><creatorcontrib>Kompalli, S.</creatorcontrib><creatorcontrib>Chaudhary, V.</creatorcontrib><title>Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes</title><title>2008 International Conference on Complex, Intelligent and Software Intensive Systems</title><addtitle>CISIS</addtitle><description>Liver segmentation from scans of the abdominal area is an important step in several diagnostic processes. CT scans of the abdominal area contain several organs in close proximity exhibiting similar image characteristics. In this paper, we present preliminary results on an algorithm that uses Markov random fields to obtain an initial contour of the liver. Gradient vector fields (GVF) and active contours are used to refine the initial estimate and segment the liver. Tests are reported on 13 clinical cases using a similarity metric that combines area and space.</description><subject>Circuit faults</subject><subject>Computed tomography</subject><subject>Current transformers</subject><subject>database construction</subject><subject>evaluation</subject><subject>Fault currents</subject><subject>GVF Snakes</subject><subject>Image segmentation</subject><subject>Liver</subject><subject>liver segmentation</subject><subject>Markov Random Fields</subject><subject>Pixel</subject><subject>X-ray CT</subject><isbn>9780769531090</isbn><isbn>0769531091</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkD1rwzAURQUl0JB67dLl_QG7kixL1hhMkxocCnXSoUuQ7adUjT-KbQL991VI73LhHLjDJeSR0Ygxqp-zvMzLiFOaRixO7kigVUqV1EnsLV2QJadKC6aZuCfBNH1TnyRJqWBL8lniqcN-NrMbehgszF8IhbvgCHYcOlhXzdC53rSQ7eEwuf4EOzOehwu8m94r2DhsG9gNDbbgCWw_NlD25ozTA1lY004Y_PeKHDYv--w1LN62ebYuQsdZModSaMmUiiXXqkZLhaQiltJIW2GsWU0bxTmrRXXF3ErNK1sbVlXGs8SaeEWebrsOEY8_o-vM-Hv0M_J6wR_xelEu</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Alomari, R.S.</creator><creator>Kompalli, S.</creator><creator>Chaudhary, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20080101</creationdate><title>Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes</title><author>Alomari, R.S. ; Kompalli, S. ; Chaudhary, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i215t-649617736297cef04604366a6fbe391c0d7221c4b04362f692bfca1bbac4b5fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Circuit faults</topic><topic>Computed tomography</topic><topic>Current transformers</topic><topic>database construction</topic><topic>evaluation</topic><topic>Fault currents</topic><topic>GVF Snakes</topic><topic>Image segmentation</topic><topic>Liver</topic><topic>liver segmentation</topic><topic>Markov Random Fields</topic><topic>Pixel</topic><topic>X-ray CT</topic><toplevel>online_resources</toplevel><creatorcontrib>Alomari, R.S.</creatorcontrib><creatorcontrib>Kompalli, S.</creatorcontrib><creatorcontrib>Chaudhary, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alomari, R.S.</au><au>Kompalli, S.</au><au>Chaudhary, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes</atitle><btitle>2008 International Conference on Complex, Intelligent and Software Intensive Systems</btitle><stitle>CISIS</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>293</spage><epage>298</epage><pages>293-298</pages><isbn>9780769531090</isbn><isbn>0769531091</isbn><abstract>Liver segmentation from scans of the abdominal area is an important step in several diagnostic processes. CT scans of the abdominal area contain several organs in close proximity exhibiting similar image characteristics. In this paper, we present preliminary results on an algorithm that uses Markov random fields to obtain an initial contour of the liver. Gradient vector fields (GVF) and active contours are used to refine the initial estimate and segment the liver. Tests are reported on 13 clinical cases using a similarity metric that combines area and space.</abstract><pub>IEEE</pub><doi>10.1109/CISIS.2008.135</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769531090
ispartof 2008 International Conference on Complex, Intelligent and Software Intensive Systems, 2008, p.293-298
issn
language eng
recordid cdi_ieee_primary_4606695
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuit faults
Computed tomography
Current transformers
database construction
evaluation
Fault currents
GVF Snakes
Image segmentation
Liver
liver segmentation
Markov Random Fields
Pixel
X-ray CT
title Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmentation%20of%20the%20Liver%20from%20Abdominal%20CT%20Using%20Markov%20Random%20Field%20Model%20and%20GVF%20Snakes&rft.btitle=2008%20International%20Conference%20on%20Complex,%20Intelligent%20and%20Software%20Intensive%20Systems&rft.au=Alomari,%20R.S.&rft.date=2008-01-01&rft.spage=293&rft.epage=298&rft.pages=293-298&rft.isbn=9780769531090&rft.isbn_list=0769531091&rft_id=info:doi/10.1109/CISIS.2008.135&rft_dat=%3Cieee_6IE%3E4606695%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4606695&rfr_iscdi=true