An iterative algorithm for constrained MPC with stability of bilinear systems

This paper presents a new algorithm for model predictive control (MPC) of constrained bilinear systems using iterative compensation of the prediction error and invariant sets for constraints satisfaction and stability guarantee. In order to improve the performance of the controller, which holds pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fontes, A.B., Dorea, C.E.T., Garcia, M.R.da S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1531
container_issue
container_start_page 1526
container_title
container_volume
creator Fontes, A.B.
Dorea, C.E.T.
Garcia, M.R.da S.
description This paper presents a new algorithm for model predictive control (MPC) of constrained bilinear systems using iterative compensation of the prediction error and invariant sets for constraints satisfaction and stability guarantee. In order to improve the performance of the controller, which holds prediction as its essence, an iterative process is proposed with the objective of reducing the prediction errors due to the use of a quasi-linear approximation of the bilinear model. A study of the conditions under which the prediction error converges to zero is also provided. An important outcome of this property is that feasibility and effective state constraints satisfaction along the state trajectory can be achieved. For stability guarantee, a controlled-invariant set is computed and used as terminal constraint. Then, if the initial state is admissible, the state trajectory is assured to converge to this terminal set without violating the constraints. Once inside this region, a local controller can be used to drive the state to the operation point. Numerical examples illustrate the effectiveness of the proposed algorithm regarding convergence, constraints satisfaction and stability.
doi_str_mv 10.1109/MED.2008.4602048
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4602048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4602048</ieee_id><sourcerecordid>4602048</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5c559ae9f486a16fb1e17b88ea4db7c7985e820567bf340c64a1d84ace3c84483</originalsourceid><addsrcrecordid>eNpFUE1PwzAUC0KTYGN3JC75Ay0vzUubHKcyPqRVcNh9SttXCOoHSiJQ_z2bmIQvtmXLBzN2KyAVAsx9tX1IMwCdYg4ZoL5gS4EZYqZAweW_wWzBlqeiAVkYdcXWIXzCEaikFPk1qzYjd5G8je6buO3fJ-_ix8C7yfNmGkP01o3U8uqt5D_HhIdoa9e7OPOp4yc1kvU8zCHSEG7YorN9oPWZV2z_uN2Xz8nu9eml3OwSZyAmqlHKWDId6tyKvKsFiaLWmiy2ddEURivSGai8qDuJ0ORoRavRNiQbjajlit39zToiOnx5N1g_H85XyF9jmlA2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An iterative algorithm for constrained MPC with stability of bilinear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fontes, A.B. ; Dorea, C.E.T. ; Garcia, M.R.da S.</creator><creatorcontrib>Fontes, A.B. ; Dorea, C.E.T. ; Garcia, M.R.da S.</creatorcontrib><description>This paper presents a new algorithm for model predictive control (MPC) of constrained bilinear systems using iterative compensation of the prediction error and invariant sets for constraints satisfaction and stability guarantee. In order to improve the performance of the controller, which holds prediction as its essence, an iterative process is proposed with the objective of reducing the prediction errors due to the use of a quasi-linear approximation of the bilinear model. A study of the conditions under which the prediction error converges to zero is also provided. An important outcome of this property is that feasibility and effective state constraints satisfaction along the state trajectory can be achieved. For stability guarantee, a controlled-invariant set is computed and used as terminal constraint. Then, if the initial state is admissible, the state trajectory is assured to converge to this terminal set without violating the constraints. Once inside this region, a local controller can be used to drive the state to the operation point. Numerical examples illustrate the effectiveness of the proposed algorithm regarding convergence, constraints satisfaction and stability.</description><identifier>ISBN: 1424425042</identifier><identifier>ISBN: 9781424425044</identifier><identifier>EISBN: 1424425050</identifier><identifier>EISBN: 9781424425051</identifier><identifier>DOI: 10.1109/MED.2008.4602048</identifier><identifier>LCCN: 2008903795</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Conferences</subject><ispartof>2008 16th Mediterranean Conference on Control and Automation, 2008, p.1526-1531</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4602048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4602048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fontes, A.B.</creatorcontrib><creatorcontrib>Dorea, C.E.T.</creatorcontrib><creatorcontrib>Garcia, M.R.da S.</creatorcontrib><title>An iterative algorithm for constrained MPC with stability of bilinear systems</title><title>2008 16th Mediterranean Conference on Control and Automation</title><addtitle>MED</addtitle><description>This paper presents a new algorithm for model predictive control (MPC) of constrained bilinear systems using iterative compensation of the prediction error and invariant sets for constraints satisfaction and stability guarantee. In order to improve the performance of the controller, which holds prediction as its essence, an iterative process is proposed with the objective of reducing the prediction errors due to the use of a quasi-linear approximation of the bilinear model. A study of the conditions under which the prediction error converges to zero is also provided. An important outcome of this property is that feasibility and effective state constraints satisfaction along the state trajectory can be achieved. For stability guarantee, a controlled-invariant set is computed and used as terminal constraint. Then, if the initial state is admissible, the state trajectory is assured to converge to this terminal set without violating the constraints. Once inside this region, a local controller can be used to drive the state to the operation point. Numerical examples illustrate the effectiveness of the proposed algorithm regarding convergence, constraints satisfaction and stability.</description><subject>Automation</subject><subject>Conferences</subject><isbn>1424425042</isbn><isbn>9781424425044</isbn><isbn>1424425050</isbn><isbn>9781424425051</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1PwzAUC0KTYGN3JC75Ay0vzUubHKcyPqRVcNh9SttXCOoHSiJQ_z2bmIQvtmXLBzN2KyAVAsx9tX1IMwCdYg4ZoL5gS4EZYqZAweW_wWzBlqeiAVkYdcXWIXzCEaikFPk1qzYjd5G8je6buO3fJ-_ix8C7yfNmGkP01o3U8uqt5D_HhIdoa9e7OPOp4yc1kvU8zCHSEG7YorN9oPWZV2z_uN2Xz8nu9eml3OwSZyAmqlHKWDId6tyKvKsFiaLWmiy2ddEURivSGai8qDuJ0ORoRavRNiQbjajlit39zToiOnx5N1g_H85XyF9jmlA2</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Fontes, A.B.</creator><creator>Dorea, C.E.T.</creator><creator>Garcia, M.R.da S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>An iterative algorithm for constrained MPC with stability of bilinear systems</title><author>Fontes, A.B. ; Dorea, C.E.T. ; Garcia, M.R.da S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5c559ae9f486a16fb1e17b88ea4db7c7985e820567bf340c64a1d84ace3c84483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automation</topic><topic>Conferences</topic><toplevel>online_resources</toplevel><creatorcontrib>Fontes, A.B.</creatorcontrib><creatorcontrib>Dorea, C.E.T.</creatorcontrib><creatorcontrib>Garcia, M.R.da S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontes, A.B.</au><au>Dorea, C.E.T.</au><au>Garcia, M.R.da S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An iterative algorithm for constrained MPC with stability of bilinear systems</atitle><btitle>2008 16th Mediterranean Conference on Control and Automation</btitle><stitle>MED</stitle><date>2008-06</date><risdate>2008</risdate><spage>1526</spage><epage>1531</epage><pages>1526-1531</pages><isbn>1424425042</isbn><isbn>9781424425044</isbn><eisbn>1424425050</eisbn><eisbn>9781424425051</eisbn><abstract>This paper presents a new algorithm for model predictive control (MPC) of constrained bilinear systems using iterative compensation of the prediction error and invariant sets for constraints satisfaction and stability guarantee. In order to improve the performance of the controller, which holds prediction as its essence, an iterative process is proposed with the objective of reducing the prediction errors due to the use of a quasi-linear approximation of the bilinear model. A study of the conditions under which the prediction error converges to zero is also provided. An important outcome of this property is that feasibility and effective state constraints satisfaction along the state trajectory can be achieved. For stability guarantee, a controlled-invariant set is computed and used as terminal constraint. Then, if the initial state is admissible, the state trajectory is assured to converge to this terminal set without violating the constraints. Once inside this region, a local controller can be used to drive the state to the operation point. Numerical examples illustrate the effectiveness of the proposed algorithm regarding convergence, constraints satisfaction and stability.</abstract><pub>IEEE</pub><doi>10.1109/MED.2008.4602048</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424425042
ispartof 2008 16th Mediterranean Conference on Control and Automation, 2008, p.1526-1531
issn
language eng
recordid cdi_ieee_primary_4602048
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Conferences
title An iterative algorithm for constrained MPC with stability of bilinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20iterative%20algorithm%20for%20constrained%20MPC%20with%20stability%20of%20bilinear%20systems&rft.btitle=2008%2016th%20Mediterranean%20Conference%20on%20Control%20and%20Automation&rft.au=Fontes,%20A.B.&rft.date=2008-06&rft.spage=1526&rft.epage=1531&rft.pages=1526-1531&rft.isbn=1424425042&rft.isbn_list=9781424425044&rft_id=info:doi/10.1109/MED.2008.4602048&rft_dat=%3Cieee_6IE%3E4602048%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425050&rft.eisbn_list=9781424425051&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4602048&rfr_iscdi=true