A new multitask learning method for multiorganism gene network estimation
A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlyi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2291 |
---|---|
container_issue | |
container_start_page | 2287 |
container_title | |
container_volume | |
creator | Nassar, M. Abdallah, R. Zeineddine, H.A. Yaacoub, E. Dawy, Z. |
description | A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast). |
doi_str_mv | 10.1109/ISIT.2008.4595398 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4595398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4595398</ieee_id><sourcerecordid>4595398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1b47a8c0aa9381ecb2a0dafa6533db5e1245ef073e8f2bf9d3c38a134b4a20983</originalsourceid><addsrcrecordid>eNpVkMtqwzAURNVHoCb1B5Ru9AN2dfWIpGUIfRgCXTRdh2v72nXjR7FVQv--hqSLzmYWh5mBYewORAog_EP2lu1SKYRLtfFGeXfBYm8daKm1lMb6SxZJMDZxAPbqH1vJ6z8mvFmwyMoErNfK3rB4mj7FLG2U1C5i2Zr3dOTddxuagNOBt4Rj3_Q17yh8DCWvhvFEh7HGvpk6XlNPcygch_HAaQpNhzPtb9miwnai-OxL9v70uNu8JNvX52yz3iYNWBMSyLVFVwhErxxQkUsUJVa4MkqVuSGQ2lAlrCJXybzypSqUQ1A61yiFd2rJ7k-9DRHtv8Z5fvzZn09Svx8BVUE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new multitask learning method for multiorganism gene network estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nassar, M. ; Abdallah, R. ; Zeineddine, H.A. ; Yaacoub, E. ; Dawy, Z.</creator><creatorcontrib>Nassar, M. ; Abdallah, R. ; Zeineddine, H.A. ; Yaacoub, E. ; Dawy, Z.</creatorcontrib><description>A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424422562</identifier><identifier>ISBN: 1424422566</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424422579</identifier><identifier>EISBN: 1424422574</identifier><identifier>DOI: 10.1109/ISIT.2008.4595398</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian networks ; Bioinformatics ; Biology ; evolutionary information ; Gene expression ; genetic regulatory networks ; Genomics ; multitask learning ; Organisms ; Periodic structures</subject><ispartof>2008 IEEE International Symposium on Information Theory, 2008, p.2287-2291</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4595398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4595398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Abdallah, R.</creatorcontrib><creatorcontrib>Zeineddine, H.A.</creatorcontrib><creatorcontrib>Yaacoub, E.</creatorcontrib><creatorcontrib>Dawy, Z.</creatorcontrib><title>A new multitask learning method for multiorganism gene network estimation</title><title>2008 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).</description><subject>Bayesian methods</subject><subject>Bayesian networks</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>evolutionary information</subject><subject>Gene expression</subject><subject>genetic regulatory networks</subject><subject>Genomics</subject><subject>multitask learning</subject><subject>Organisms</subject><subject>Periodic structures</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424422562</isbn><isbn>1424422566</isbn><isbn>9781424422579</isbn><isbn>1424422574</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtqwzAURNVHoCb1B5Ru9AN2dfWIpGUIfRgCXTRdh2v72nXjR7FVQv--hqSLzmYWh5mBYewORAog_EP2lu1SKYRLtfFGeXfBYm8daKm1lMb6SxZJMDZxAPbqH1vJ6z8mvFmwyMoErNfK3rB4mj7FLG2U1C5i2Zr3dOTddxuagNOBt4Rj3_Q17yh8DCWvhvFEh7HGvpk6XlNPcygch_HAaQpNhzPtb9miwnai-OxL9v70uNu8JNvX52yz3iYNWBMSyLVFVwhErxxQkUsUJVa4MkqVuSGQ2lAlrCJXybzypSqUQ1A61yiFd2rJ7k-9DRHtv8Z5fvzZn09Svx8BVUE</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Nassar, M.</creator><creator>Abdallah, R.</creator><creator>Zeineddine, H.A.</creator><creator>Yaacoub, E.</creator><creator>Dawy, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>A new multitask learning method for multiorganism gene network estimation</title><author>Nassar, M. ; Abdallah, R. ; Zeineddine, H.A. ; Yaacoub, E. ; Dawy, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1b47a8c0aa9381ecb2a0dafa6533db5e1245ef073e8f2bf9d3c38a134b4a20983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian methods</topic><topic>Bayesian networks</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>evolutionary information</topic><topic>Gene expression</topic><topic>genetic regulatory networks</topic><topic>Genomics</topic><topic>multitask learning</topic><topic>Organisms</topic><topic>Periodic structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Abdallah, R.</creatorcontrib><creatorcontrib>Zeineddine, H.A.</creatorcontrib><creatorcontrib>Yaacoub, E.</creatorcontrib><creatorcontrib>Dawy, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nassar, M.</au><au>Abdallah, R.</au><au>Zeineddine, H.A.</au><au>Yaacoub, E.</au><au>Dawy, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new multitask learning method for multiorganism gene network estimation</atitle><btitle>2008 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2008-07</date><risdate>2008</risdate><spage>2287</spage><epage>2291</epage><pages>2287-2291</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424422562</isbn><isbn>1424422566</isbn><eisbn>9781424422579</eisbn><eisbn>1424422574</eisbn><abstract>A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2008.4595398</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2008 IEEE International Symposium on Information Theory, 2008, p.2287-2291 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_4595398 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Bayesian networks Bioinformatics Biology evolutionary information Gene expression genetic regulatory networks Genomics multitask learning Organisms Periodic structures |
title | A new multitask learning method for multiorganism gene network estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20multitask%20learning%20method%20for%20multiorganism%20gene%20network%20estimation&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Nassar,%20M.&rft.date=2008-07&rft.spage=2287&rft.epage=2291&rft.pages=2287-2291&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424422562&rft.isbn_list=1424422566&rft_id=info:doi/10.1109/ISIT.2008.4595398&rft_dat=%3Cieee_6IE%3E4595398%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422579&rft.eisbn_list=1424422574&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4595398&rfr_iscdi=true |