A new multitask learning method for multiorganism gene network estimation

A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nassar, M., Abdallah, R., Zeineddine, H.A., Yaacoub, E., Dawy, Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2291
container_issue
container_start_page 2287
container_title
container_volume
creator Nassar, M.
Abdallah, R.
Zeineddine, H.A.
Yaacoub, E.
Dawy, Z.
description A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).
doi_str_mv 10.1109/ISIT.2008.4595398
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4595398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4595398</ieee_id><sourcerecordid>4595398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1b47a8c0aa9381ecb2a0dafa6533db5e1245ef073e8f2bf9d3c38a134b4a20983</originalsourceid><addsrcrecordid>eNpVkMtqwzAURNVHoCb1B5Ru9AN2dfWIpGUIfRgCXTRdh2v72nXjR7FVQv--hqSLzmYWh5mBYewORAog_EP2lu1SKYRLtfFGeXfBYm8daKm1lMb6SxZJMDZxAPbqH1vJ6z8mvFmwyMoErNfK3rB4mj7FLG2U1C5i2Zr3dOTddxuagNOBt4Rj3_Q17yh8DCWvhvFEh7HGvpk6XlNPcygch_HAaQpNhzPtb9miwnai-OxL9v70uNu8JNvX52yz3iYNWBMSyLVFVwhErxxQkUsUJVa4MkqVuSGQ2lAlrCJXybzypSqUQ1A61yiFd2rJ7k-9DRHtv8Z5fvzZn09Svx8BVUE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new multitask learning method for multiorganism gene network estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nassar, M. ; Abdallah, R. ; Zeineddine, H.A. ; Yaacoub, E. ; Dawy, Z.</creator><creatorcontrib>Nassar, M. ; Abdallah, R. ; Zeineddine, H.A. ; Yaacoub, E. ; Dawy, Z.</creatorcontrib><description>A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424422562</identifier><identifier>ISBN: 1424422566</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424422579</identifier><identifier>EISBN: 1424422574</identifier><identifier>DOI: 10.1109/ISIT.2008.4595398</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian networks ; Bioinformatics ; Biology ; evolutionary information ; Gene expression ; genetic regulatory networks ; Genomics ; multitask learning ; Organisms ; Periodic structures</subject><ispartof>2008 IEEE International Symposium on Information Theory, 2008, p.2287-2291</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4595398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4595398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Abdallah, R.</creatorcontrib><creatorcontrib>Zeineddine, H.A.</creatorcontrib><creatorcontrib>Yaacoub, E.</creatorcontrib><creatorcontrib>Dawy, Z.</creatorcontrib><title>A new multitask learning method for multiorganism gene network estimation</title><title>2008 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).</description><subject>Bayesian methods</subject><subject>Bayesian networks</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>evolutionary information</subject><subject>Gene expression</subject><subject>genetic regulatory networks</subject><subject>Genomics</subject><subject>multitask learning</subject><subject>Organisms</subject><subject>Periodic structures</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424422562</isbn><isbn>1424422566</isbn><isbn>9781424422579</isbn><isbn>1424422574</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtqwzAURNVHoCb1B5Ru9AN2dfWIpGUIfRgCXTRdh2v72nXjR7FVQv--hqSLzmYWh5mBYewORAog_EP2lu1SKYRLtfFGeXfBYm8daKm1lMb6SxZJMDZxAPbqH1vJ6z8mvFmwyMoErNfK3rB4mj7FLG2U1C5i2Zr3dOTddxuagNOBt4Rj3_Q17yh8DCWvhvFEh7HGvpk6XlNPcygch_HAaQpNhzPtb9miwnai-OxL9v70uNu8JNvX52yz3iYNWBMSyLVFVwhErxxQkUsUJVa4MkqVuSGQ2lAlrCJXybzypSqUQ1A61yiFd2rJ7k-9DRHtv8Z5fvzZn09Svx8BVUE</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Nassar, M.</creator><creator>Abdallah, R.</creator><creator>Zeineddine, H.A.</creator><creator>Yaacoub, E.</creator><creator>Dawy, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>A new multitask learning method for multiorganism gene network estimation</title><author>Nassar, M. ; Abdallah, R. ; Zeineddine, H.A. ; Yaacoub, E. ; Dawy, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1b47a8c0aa9381ecb2a0dafa6533db5e1245ef073e8f2bf9d3c38a134b4a20983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian methods</topic><topic>Bayesian networks</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>evolutionary information</topic><topic>Gene expression</topic><topic>genetic regulatory networks</topic><topic>Genomics</topic><topic>multitask learning</topic><topic>Organisms</topic><topic>Periodic structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Abdallah, R.</creatorcontrib><creatorcontrib>Zeineddine, H.A.</creatorcontrib><creatorcontrib>Yaacoub, E.</creatorcontrib><creatorcontrib>Dawy, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nassar, M.</au><au>Abdallah, R.</au><au>Zeineddine, H.A.</au><au>Yaacoub, E.</au><au>Dawy, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new multitask learning method for multiorganism gene network estimation</atitle><btitle>2008 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2008-07</date><risdate>2008</risdate><spage>2287</spage><epage>2291</epage><pages>2287-2291</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424422562</isbn><isbn>1424422566</isbn><eisbn>9781424422579</eisbn><eisbn>1424422574</eisbn><abstract>A new method for multitask learning in a Bayesian network context is presented for multiorganism gene network estimation. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from actual edges in the true underlying Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes (human and yeast).</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2008.4595398</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2008 IEEE International Symposium on Information Theory, 2008, p.2287-2291
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_4595398
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Bayesian networks
Bioinformatics
Biology
evolutionary information
Gene expression
genetic regulatory networks
Genomics
multitask learning
Organisms
Periodic structures
title A new multitask learning method for multiorganism gene network estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20multitask%20learning%20method%20for%20multiorganism%20gene%20network%20estimation&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Nassar,%20M.&rft.date=2008-07&rft.spage=2287&rft.epage=2291&rft.pages=2287-2291&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424422562&rft.isbn_list=1424422566&rft_id=info:doi/10.1109/ISIT.2008.4595398&rft_dat=%3Cieee_6IE%3E4595398%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422579&rft.eisbn_list=1424422574&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4595398&rfr_iscdi=true