On subspace structure in source and channel coding

The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fletcher, A.K., Rangan, S., Goyal, V.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1986
container_issue
container_start_page 1982
container_title
container_volume
creator Fletcher, A.K.
Rangan, S.
Goyal, V.K.
description The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.
doi_str_mv 10.1109/ISIT.2008.4595336
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4595336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4595336</ieee_id><sourcerecordid>4595336</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-540c62fa5d04d46e2143194fd6a0901ea60070485038ee02e8cc2a56befa68e03</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcefgqHmAcRNXiDxzp07f0spWgOFLqzrMp3caKSmJZMsfHsL1oVnc-D74CyOEHcSKinBP9Sv9aZCAFeR9lopcyFyb50kJELU1l-KDKW2pZPSXv1zBq__HHg9E5nFUlpPyt6IPKVPOIW0QnKZwHVfpGmXjiFykcZhiuM0cNGd6GEaTiz0TRE_Qt_zvoiHpuvfb8WsDfvE-bnn4u35abN4KVfrZb14XJWdtHosNUE02AbdADVkGCUp6altTAAPkoMBsEBOg3LMgOxixKDNjttgHIOai_vf3Y6Zt8eh-wrD9_b8hvoB6J5K5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On subspace structure in source and channel coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fletcher, A.K. ; Rangan, S. ; Goyal, V.K.</creator><creatorcontrib>Fletcher, A.K. ; Rangan, S. ; Goyal, V.K.</creatorcontrib><description>The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424422562</identifier><identifier>ISBN: 1424422566</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424422579</identifier><identifier>EISBN: 1424422574</identifier><identifier>DOI: 10.1109/ISIT.2008.4595336</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation error ; Channel coding ; Complexity theory ; Quantization ; Rate-distortion ; Signal to noise ratio ; Source coding</subject><ispartof>2008 IEEE International Symposium on Information Theory, 2008, p.1982-1986</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4595336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4595336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><creatorcontrib>Goyal, V.K.</creatorcontrib><title>On subspace structure in source and channel coding</title><title>2008 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.</description><subject>Approximation error</subject><subject>Channel coding</subject><subject>Complexity theory</subject><subject>Quantization</subject><subject>Rate-distortion</subject><subject>Signal to noise ratio</subject><subject>Source coding</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424422562</isbn><isbn>1424422566</isbn><isbn>9781424422579</isbn><isbn>1424422574</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhcefgqHmAcRNXiDxzp07f0spWgOFLqzrMp3caKSmJZMsfHsL1oVnc-D74CyOEHcSKinBP9Sv9aZCAFeR9lopcyFyb50kJELU1l-KDKW2pZPSXv1zBq__HHg9E5nFUlpPyt6IPKVPOIW0QnKZwHVfpGmXjiFykcZhiuM0cNGd6GEaTiz0TRE_Qt_zvoiHpuvfb8WsDfvE-bnn4u35abN4KVfrZb14XJWdtHosNUE02AbdADVkGCUp6altTAAPkoMBsEBOg3LMgOxixKDNjttgHIOai_vf3Y6Zt8eh-wrD9_b8hvoB6J5K5Q</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Fletcher, A.K.</creator><creator>Rangan, S.</creator><creator>Goyal, V.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>On subspace structure in source and channel coding</title><author>Fletcher, A.K. ; Rangan, S. ; Goyal, V.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-540c62fa5d04d46e2143194fd6a0901ea60070485038ee02e8cc2a56befa68e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation error</topic><topic>Channel coding</topic><topic>Complexity theory</topic><topic>Quantization</topic><topic>Rate-distortion</topic><topic>Signal to noise ratio</topic><topic>Source coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><creatorcontrib>Goyal, V.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fletcher, A.K.</au><au>Rangan, S.</au><au>Goyal, V.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On subspace structure in source and channel coding</atitle><btitle>2008 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2008-07</date><risdate>2008</risdate><spage>1982</spage><epage>1986</epage><pages>1982-1986</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424422562</isbn><isbn>1424422566</isbn><eisbn>9781424422579</eisbn><eisbn>1424422574</eisbn><abstract>The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2008.4595336</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2008 IEEE International Symposium on Information Theory, 2008, p.1982-1986
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_4595336
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation error
Channel coding
Complexity theory
Quantization
Rate-distortion
Signal to noise ratio
Source coding
title On subspace structure in source and channel coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20subspace%20structure%20in%20source%20and%20channel%20coding&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Fletcher,%20A.K.&rft.date=2008-07&rft.spage=1982&rft.epage=1986&rft.pages=1982-1986&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424422562&rft.isbn_list=1424422566&rft_id=info:doi/10.1109/ISIT.2008.4595336&rft_dat=%3Cieee_6IE%3E4595336%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422579&rft.eisbn_list=1424422574&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4595336&rfr_iscdi=true