On subspace structure in source and channel coding
The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecti...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1986 |
---|---|
container_issue | |
container_start_page | 1982 |
container_title | |
container_volume | |
creator | Fletcher, A.K. Rangan, S. Goyal, V.K. |
description | The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search. |
doi_str_mv | 10.1109/ISIT.2008.4595336 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4595336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4595336</ieee_id><sourcerecordid>4595336</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-540c62fa5d04d46e2143194fd6a0901ea60070485038ee02e8cc2a56befa68e03</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcefgqHmAcRNXiDxzp07f0spWgOFLqzrMp3caKSmJZMsfHsL1oVnc-D74CyOEHcSKinBP9Sv9aZCAFeR9lopcyFyb50kJELU1l-KDKW2pZPSXv1zBq__HHg9E5nFUlpPyt6IPKVPOIW0QnKZwHVfpGmXjiFykcZhiuM0cNGd6GEaTiz0TRE_Qt_zvoiHpuvfb8WsDfvE-bnn4u35abN4KVfrZb14XJWdtHosNUE02AbdADVkGCUp6altTAAPkoMBsEBOg3LMgOxixKDNjttgHIOai_vf3Y6Zt8eh-wrD9_b8hvoB6J5K5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On subspace structure in source and channel coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fletcher, A.K. ; Rangan, S. ; Goyal, V.K.</creator><creatorcontrib>Fletcher, A.K. ; Rangan, S. ; Goyal, V.K.</creatorcontrib><description>The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424422562</identifier><identifier>ISBN: 1424422566</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424422579</identifier><identifier>EISBN: 1424422574</identifier><identifier>DOI: 10.1109/ISIT.2008.4595336</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation error ; Channel coding ; Complexity theory ; Quantization ; Rate-distortion ; Signal to noise ratio ; Source coding</subject><ispartof>2008 IEEE International Symposium on Information Theory, 2008, p.1982-1986</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4595336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4595336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><creatorcontrib>Goyal, V.K.</creatorcontrib><title>On subspace structure in source and channel coding</title><title>2008 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.</description><subject>Approximation error</subject><subject>Channel coding</subject><subject>Complexity theory</subject><subject>Quantization</subject><subject>Rate-distortion</subject><subject>Signal to noise ratio</subject><subject>Source coding</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424422562</isbn><isbn>1424422566</isbn><isbn>9781424422579</isbn><isbn>1424422574</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhcefgqHmAcRNXiDxzp07f0spWgOFLqzrMp3caKSmJZMsfHsL1oVnc-D74CyOEHcSKinBP9Sv9aZCAFeR9lopcyFyb50kJELU1l-KDKW2pZPSXv1zBq__HHg9E5nFUlpPyt6IPKVPOIW0QnKZwHVfpGmXjiFykcZhiuM0cNGd6GEaTiz0TRE_Qt_zvoiHpuvfb8WsDfvE-bnn4u35abN4KVfrZb14XJWdtHosNUE02AbdADVkGCUp6altTAAPkoMBsEBOg3LMgOxixKDNjttgHIOai_vf3Y6Zt8eh-wrD9_b8hvoB6J5K5Q</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Fletcher, A.K.</creator><creator>Rangan, S.</creator><creator>Goyal, V.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>On subspace structure in source and channel coding</title><author>Fletcher, A.K. ; Rangan, S. ; Goyal, V.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-540c62fa5d04d46e2143194fd6a0901ea60070485038ee02e8cc2a56befa68e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation error</topic><topic>Channel coding</topic><topic>Complexity theory</topic><topic>Quantization</topic><topic>Rate-distortion</topic><topic>Signal to noise ratio</topic><topic>Source coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><creatorcontrib>Goyal, V.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fletcher, A.K.</au><au>Rangan, S.</au><au>Goyal, V.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On subspace structure in source and channel coding</atitle><btitle>2008 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2008-07</date><risdate>2008</risdate><spage>1982</spage><epage>1986</epage><pages>1982-1986</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424422562</isbn><isbn>1424422566</isbn><eisbn>9781424422579</eisbn><eisbn>1424422574</eisbn><abstract>The use of subspace structure in source and channel coding is studied. We show that for source coding of an i.i.d. Gaussian source, restriction of the codebook to a union of subspaces need not induce any performance penalty. In fact, in N-dimensional space, a two-stage quantization of first projecting to the nearest of J subspaces of dimension K in a random first-stage codebook of subspaces, followed by quantizing to the nearest of codewords in a second-stage codebook within the K-dimensional subspace induces no performance loss. This structure allows the rate-distortion bound to be approached asymptotically with block length N. The dual results for channel coding are explicitly described: for an additive white Gaussian noise channel, we introduce a particular subspace-based codebook that induces no rate loss, and the Shannon capacity is achieved. While this has complexity exponential in N, it is reduced from an unstructured search.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2008.4595336</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2008 IEEE International Symposium on Information Theory, 2008, p.1982-1986 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_4595336 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation error Channel coding Complexity theory Quantization Rate-distortion Signal to noise ratio Source coding |
title | On subspace structure in source and channel coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20subspace%20structure%20in%20source%20and%20channel%20coding&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Fletcher,%20A.K.&rft.date=2008-07&rft.spage=1982&rft.epage=1986&rft.pages=1982-1986&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424422562&rft.isbn_list=1424422566&rft_id=info:doi/10.1109/ISIT.2008.4595336&rft_dat=%3Cieee_6IE%3E4595336%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422579&rft.eisbn_list=1424422574&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4595336&rfr_iscdi=true |