Color Image Segmentation in a Novel Dynamic Color Space
This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixel...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5927 |
---|---|
container_issue | |
container_start_page | 5922 |
container_title | |
container_volume | |
creator | Chunlin Jiao Mantun Gao Yikai Shi |
description | This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing. |
doi_str_mv | 10.1109/WCICA.2008.4594555 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4594555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4594555</ieee_id><sourcerecordid>4594555</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-871267e8d1541d28620dfa8b38339cc3d6bd809db64a25d7c021ea2b579673c73</originalsourceid><addsrcrecordid>eNpFj8tKA0EURFskoIn5Ad30D2S8t9-9lPEVCLqI4jL0dN-ElnmEmUHI3xtJwNoUBYeiirFbhAIR_P1XuSwfCgHgCqW90lpfsCkqoZRAVOryP0gzYdM_0AMYC1dsPgzfcJTS0nhzzWzZ1V3Pl03YEV_TrqF2DGPuWp5bHvhb90M1fzy0ocmRn9j1PkS6YZNtqAean33GPp-fPsrXxer95ThutcgIelw4i8JYcgm1wiScEZC2wVXSSeljlMlUyYFPlVFB6GQjCKQgKm29sTJaOWN3p95MRJt9n5vQHzbn1_IXrR1HDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Color Image Segmentation in a Novel Dynamic Color Space</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chunlin Jiao ; Mantun Gao ; Yikai Shi</creator><creatorcontrib>Chunlin Jiao ; Mantun Gao ; Yikai Shi</creatorcontrib><description>This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.</description><identifier>ISBN: 1424421136</identifier><identifier>ISBN: 9781424421138</identifier><identifier>EISBN: 1424421144</identifier><identifier>EISBN: 9781424421145</identifier><identifier>DOI: 10.1109/WCICA.2008.4594555</identifier><identifier>LCCN: 2008900670</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; clustering techniques ; Color ; color space ; Electromagnetic scattering ; electromagnetic wave ; Image color analysis ; Image segmentation ; Pixel</subject><ispartof>2008 7th World Congress on Intelligent Control and Automation, 2008, p.5922-5927</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4594555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4594555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunlin Jiao</creatorcontrib><creatorcontrib>Mantun Gao</creatorcontrib><creatorcontrib>Yikai Shi</creatorcontrib><title>Color Image Segmentation in a Novel Dynamic Color Space</title><title>2008 7th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>clustering techniques</subject><subject>Color</subject><subject>color space</subject><subject>Electromagnetic scattering</subject><subject>electromagnetic wave</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Pixel</subject><isbn>1424421136</isbn><isbn>9781424421138</isbn><isbn>1424421144</isbn><isbn>9781424421145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8tKA0EURFskoIn5Ad30D2S8t9-9lPEVCLqI4jL0dN-ElnmEmUHI3xtJwNoUBYeiirFbhAIR_P1XuSwfCgHgCqW90lpfsCkqoZRAVOryP0gzYdM_0AMYC1dsPgzfcJTS0nhzzWzZ1V3Pl03YEV_TrqF2DGPuWp5bHvhb90M1fzy0ocmRn9j1PkS6YZNtqAean33GPp-fPsrXxer95ThutcgIelw4i8JYcgm1wiScEZC2wVXSSeljlMlUyYFPlVFB6GQjCKQgKm29sTJaOWN3p95MRJt9n5vQHzbn1_IXrR1HDA</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Chunlin Jiao</creator><creator>Mantun Gao</creator><creator>Yikai Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Color Image Segmentation in a Novel Dynamic Color Space</title><author>Chunlin Jiao ; Mantun Gao ; Yikai Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-871267e8d1541d28620dfa8b38339cc3d6bd809db64a25d7c021ea2b579673c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>clustering techniques</topic><topic>Color</topic><topic>color space</topic><topic>Electromagnetic scattering</topic><topic>electromagnetic wave</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Chunlin Jiao</creatorcontrib><creatorcontrib>Mantun Gao</creatorcontrib><creatorcontrib>Yikai Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunlin Jiao</au><au>Mantun Gao</au><au>Yikai Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Color Image Segmentation in a Novel Dynamic Color Space</atitle><btitle>2008 7th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2008-06</date><risdate>2008</risdate><spage>5922</spage><epage>5927</epage><pages>5922-5927</pages><isbn>1424421136</isbn><isbn>9781424421138</isbn><eisbn>1424421144</eisbn><eisbn>9781424421145</eisbn><abstract>This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2008.4594555</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421136 |
ispartof | 2008 7th World Congress on Intelligent Control and Automation, 2008, p.5922-5927 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4594555 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Clustering algorithms clustering techniques Color color space Electromagnetic scattering electromagnetic wave Image color analysis Image segmentation Pixel |
title | Color Image Segmentation in a Novel Dynamic Color Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Color%20Image%20Segmentation%20in%20a%20Novel%20Dynamic%20Color%20Space&rft.btitle=2008%207th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Chunlin%20Jiao&rft.date=2008-06&rft.spage=5922&rft.epage=5927&rft.pages=5922-5927&rft.isbn=1424421136&rft.isbn_list=9781424421138&rft_id=info:doi/10.1109/WCICA.2008.4594555&rft_dat=%3Cieee_6IE%3E4594555%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421144&rft.eisbn_list=9781424421145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4594555&rfr_iscdi=true |