Color Image Segmentation in a Novel Dynamic Color Space

This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chunlin Jiao, Mantun Gao, Yikai Shi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5927
container_issue
container_start_page 5922
container_title
container_volume
creator Chunlin Jiao
Mantun Gao
Yikai Shi
description This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.
doi_str_mv 10.1109/WCICA.2008.4594555
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4594555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4594555</ieee_id><sourcerecordid>4594555</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-871267e8d1541d28620dfa8b38339cc3d6bd809db64a25d7c021ea2b579673c73</originalsourceid><addsrcrecordid>eNpFj8tKA0EURFskoIn5Ad30D2S8t9-9lPEVCLqI4jL0dN-ElnmEmUHI3xtJwNoUBYeiirFbhAIR_P1XuSwfCgHgCqW90lpfsCkqoZRAVOryP0gzYdM_0AMYC1dsPgzfcJTS0nhzzWzZ1V3Pl03YEV_TrqF2DGPuWp5bHvhb90M1fzy0ocmRn9j1PkS6YZNtqAean33GPp-fPsrXxer95ThutcgIelw4i8JYcgm1wiScEZC2wVXSSeljlMlUyYFPlVFB6GQjCKQgKm29sTJaOWN3p95MRJt9n5vQHzbn1_IXrR1HDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Color Image Segmentation in a Novel Dynamic Color Space</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chunlin Jiao ; Mantun Gao ; Yikai Shi</creator><creatorcontrib>Chunlin Jiao ; Mantun Gao ; Yikai Shi</creatorcontrib><description>This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.</description><identifier>ISBN: 1424421136</identifier><identifier>ISBN: 9781424421138</identifier><identifier>EISBN: 1424421144</identifier><identifier>EISBN: 9781424421145</identifier><identifier>DOI: 10.1109/WCICA.2008.4594555</identifier><identifier>LCCN: 2008900670</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; clustering techniques ; Color ; color space ; Electromagnetic scattering ; electromagnetic wave ; Image color analysis ; Image segmentation ; Pixel</subject><ispartof>2008 7th World Congress on Intelligent Control and Automation, 2008, p.5922-5927</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4594555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4594555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunlin Jiao</creatorcontrib><creatorcontrib>Mantun Gao</creatorcontrib><creatorcontrib>Yikai Shi</creatorcontrib><title>Color Image Segmentation in a Novel Dynamic Color Space</title><title>2008 7th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>clustering techniques</subject><subject>Color</subject><subject>color space</subject><subject>Electromagnetic scattering</subject><subject>electromagnetic wave</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Pixel</subject><isbn>1424421136</isbn><isbn>9781424421138</isbn><isbn>1424421144</isbn><isbn>9781424421145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8tKA0EURFskoIn5Ad30D2S8t9-9lPEVCLqI4jL0dN-ElnmEmUHI3xtJwNoUBYeiirFbhAIR_P1XuSwfCgHgCqW90lpfsCkqoZRAVOryP0gzYdM_0AMYC1dsPgzfcJTS0nhzzWzZ1V3Pl03YEV_TrqF2DGPuWp5bHvhb90M1fzy0ocmRn9j1PkS6YZNtqAean33GPp-fPsrXxer95ThutcgIelw4i8JYcgm1wiScEZC2wVXSSeljlMlUyYFPlVFB6GQjCKQgKm29sTJaOWN3p95MRJt9n5vQHzbn1_IXrR1HDA</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Chunlin Jiao</creator><creator>Mantun Gao</creator><creator>Yikai Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Color Image Segmentation in a Novel Dynamic Color Space</title><author>Chunlin Jiao ; Mantun Gao ; Yikai Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-871267e8d1541d28620dfa8b38339cc3d6bd809db64a25d7c021ea2b579673c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>clustering techniques</topic><topic>Color</topic><topic>color space</topic><topic>Electromagnetic scattering</topic><topic>electromagnetic wave</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Chunlin Jiao</creatorcontrib><creatorcontrib>Mantun Gao</creatorcontrib><creatorcontrib>Yikai Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunlin Jiao</au><au>Mantun Gao</au><au>Yikai Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Color Image Segmentation in a Novel Dynamic Color Space</atitle><btitle>2008 7th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2008-06</date><risdate>2008</risdate><spage>5922</spage><epage>5927</epage><pages>5922-5927</pages><isbn>1424421136</isbn><isbn>9781424421138</isbn><eisbn>1424421144</eisbn><eisbn>9781424421145</eisbn><abstract>This paper presents a dynamic color model based on the electromagnetic wave theory to characterize the color feature of pixels, which simulates the continuous variety of visible light. In practice, the dynamic model can be discretized, and then we use a vector to represent the color feature of pixels in a K-dimension space, which is named the dynamic color space. To verify the dynamic space performance, an adopted segmentation method based on clustering techniques is proposed, which can be used to partition a color image in RGB space or in our dynamic color space. Experiments show that the segmentation results in our dynamic space is better than that in RGB space. Furthermore, the authors believe that the dynamic color space can be used to texture analysis or other image processing.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2008.4594555</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421136
ispartof 2008 7th World Congress on Intelligent Control and Automation, 2008, p.5922-5927
issn
language eng
recordid cdi_ieee_primary_4594555
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
clustering techniques
Color
color space
Electromagnetic scattering
electromagnetic wave
Image color analysis
Image segmentation
Pixel
title Color Image Segmentation in a Novel Dynamic Color Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Color%20Image%20Segmentation%20in%20a%20Novel%20Dynamic%20Color%20Space&rft.btitle=2008%207th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Chunlin%20Jiao&rft.date=2008-06&rft.spage=5922&rft.epage=5927&rft.pages=5922-5927&rft.isbn=1424421136&rft.isbn_list=9781424421138&rft_id=info:doi/10.1109/WCICA.2008.4594555&rft_dat=%3Cieee_6IE%3E4594555%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421144&rft.eisbn_list=9781424421145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4594555&rfr_iscdi=true