Component content soft-sensor based on SVM in rare earth countercurrent extraction process
The problems of small sample, non-linearity, high dimensions and local minimal value can be well solved by support vector machine in soft-sensor modeling. In consideration of the online measurement of the component content in rare earth counter-current extraction separation process, two algorithms o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8187 |
---|---|
container_issue | |
container_start_page | 8184 |
container_title | |
container_volume | |
creator | Rongxiu Lu Hui Yang |
description | The problems of small sample, non-linearity, high dimensions and local minimal value can be well solved by support vector machine in soft-sensor modeling. In consideration of the online measurement of the component content in rare earth counter-current extraction separation process, two algorithms of SVM and LS_SVM with RBF kennel was applied to the modeling of the rare-earth extraction separation process. Through comparing the simulations of two models, it shows that the component content soft-sensor model based on LS_SVM has both preferable generalization and high velocity. LS_SVM is an effective method for rare-earth extract process soft-sensor. |
doi_str_mv | 10.1109/WCICA.2008.4594209 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4594209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4594209</ieee_id><sourcerecordid>4594209</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-57ca43142e7f092550852c8b646724b027fc48a02f830d22be67875acdc2479f3</originalsourceid><addsrcrecordid>eNpFkN1KxDAQhSOyoLvuC-hNXqDrJJ0kzaUU_2DFC__AmyXNTrHiNiXJgr69LS54bg4HvhkOh7FzASshwF6-1ff11UoCVCtUFiXYIzYXKBGlEIjH_6HUMzafQAugDZywZUqfMApVqa0-Ze912A2hpz5zH_o8eQptLhL1KUTeuERbHnr-9PrAu55HF4mTi_ljxPcjH_0-xumKvnN0PncjO8TgKaUzNmvdV6LlwRfs5eb6ub4r1o-3Y_910QmjcqGMd1iOhcm0YKVSUCnpq0ajNhIbkKb1WDmQbVXCVsqGtKmMcn7rJRrblgt28fe3I6LNELudiz-bwzDlLzV6VUo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Component content soft-sensor based on SVM in rare earth countercurrent extraction process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rongxiu Lu ; Hui Yang</creator><creatorcontrib>Rongxiu Lu ; Hui Yang</creatorcontrib><description>The problems of small sample, non-linearity, high dimensions and local minimal value can be well solved by support vector machine in soft-sensor modeling. In consideration of the online measurement of the component content in rare earth counter-current extraction separation process, two algorithms of SVM and LS_SVM with RBF kennel was applied to the modeling of the rare-earth extraction separation process. Through comparing the simulations of two models, it shows that the component content soft-sensor model based on LS_SVM has both preferable generalization and high velocity. LS_SVM is an effective method for rare-earth extract process soft-sensor.</description><identifier>ISBN: 1424421136</identifier><identifier>ISBN: 9781424421138</identifier><identifier>EISBN: 1424421144</identifier><identifier>EISBN: 9781424421145</identifier><identifier>DOI: 10.1109/WCICA.2008.4594209</identifier><identifier>LCCN: 2008900670</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Automation ; counter current extraction ; Earth ; Kernel ; LS_SVM ; Machine learning ; modeling ; Separation processes ; soft-sensor ; Support vector machines</subject><ispartof>2008 7th World Congress on Intelligent Control and Automation, 2008, p.8184-8187</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4594209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4594209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rongxiu Lu</creatorcontrib><creatorcontrib>Hui Yang</creatorcontrib><title>Component content soft-sensor based on SVM in rare earth countercurrent extraction process</title><title>2008 7th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>The problems of small sample, non-linearity, high dimensions and local minimal value can be well solved by support vector machine in soft-sensor modeling. In consideration of the online measurement of the component content in rare earth counter-current extraction separation process, two algorithms of SVM and LS_SVM with RBF kennel was applied to the modeling of the rare-earth extraction separation process. Through comparing the simulations of two models, it shows that the component content soft-sensor model based on LS_SVM has both preferable generalization and high velocity. LS_SVM is an effective method for rare-earth extract process soft-sensor.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>counter current extraction</subject><subject>Earth</subject><subject>Kernel</subject><subject>LS_SVM</subject><subject>Machine learning</subject><subject>modeling</subject><subject>Separation processes</subject><subject>soft-sensor</subject><subject>Support vector machines</subject><isbn>1424421136</isbn><isbn>9781424421138</isbn><isbn>1424421144</isbn><isbn>9781424421145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1KxDAQhSOyoLvuC-hNXqDrJJ0kzaUU_2DFC__AmyXNTrHiNiXJgr69LS54bg4HvhkOh7FzASshwF6-1ff11UoCVCtUFiXYIzYXKBGlEIjH_6HUMzafQAugDZywZUqfMApVqa0-Ze912A2hpz5zH_o8eQptLhL1KUTeuERbHnr-9PrAu55HF4mTi_ljxPcjH_0-xumKvnN0PncjO8TgKaUzNmvdV6LlwRfs5eb6ub4r1o-3Y_910QmjcqGMd1iOhcm0YKVSUCnpq0ajNhIbkKb1WDmQbVXCVsqGtKmMcn7rJRrblgt28fe3I6LNELudiz-bwzDlLzV6VUo</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Rongxiu Lu</creator><creator>Hui Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Component content soft-sensor based on SVM in rare earth countercurrent extraction process</title><author>Rongxiu Lu ; Hui Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-57ca43142e7f092550852c8b646724b027fc48a02f830d22be67875acdc2479f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>counter current extraction</topic><topic>Earth</topic><topic>Kernel</topic><topic>LS_SVM</topic><topic>Machine learning</topic><topic>modeling</topic><topic>Separation processes</topic><topic>soft-sensor</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Rongxiu Lu</creatorcontrib><creatorcontrib>Hui Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongxiu Lu</au><au>Hui Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Component content soft-sensor based on SVM in rare earth countercurrent extraction process</atitle><btitle>2008 7th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2008-06</date><risdate>2008</risdate><spage>8184</spage><epage>8187</epage><pages>8184-8187</pages><isbn>1424421136</isbn><isbn>9781424421138</isbn><eisbn>1424421144</eisbn><eisbn>9781424421145</eisbn><abstract>The problems of small sample, non-linearity, high dimensions and local minimal value can be well solved by support vector machine in soft-sensor modeling. In consideration of the online measurement of the component content in rare earth counter-current extraction separation process, two algorithms of SVM and LS_SVM with RBF kennel was applied to the modeling of the rare-earth extraction separation process. Through comparing the simulations of two models, it shows that the component content soft-sensor model based on LS_SVM has both preferable generalization and high velocity. LS_SVM is an effective method for rare-earth extract process soft-sensor.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2008.4594209</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421136 |
ispartof | 2008 7th World Congress on Intelligent Control and Automation, 2008, p.8184-8187 |
issn | |
language | chi ; eng |
recordid | cdi_ieee_primary_4594209 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Automation counter current extraction Earth Kernel LS_SVM Machine learning modeling Separation processes soft-sensor Support vector machines |
title | Component content soft-sensor based on SVM in rare earth countercurrent extraction process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Component%20content%20soft-sensor%20based%20on%20SVM%20in%20rare%20earth%20countercurrent%20extraction%20process&rft.btitle=2008%207th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Rongxiu%20Lu&rft.date=2008-06&rft.spage=8184&rft.epage=8187&rft.pages=8184-8187&rft.isbn=1424421136&rft.isbn_list=9781424421138&rft_id=info:doi/10.1109/WCICA.2008.4594209&rft_dat=%3Cieee_6IE%3E4594209%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421144&rft.eisbn_list=9781424421145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4594209&rfr_iscdi=true |