An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem
In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7906 |
---|---|
container_issue | |
container_start_page | 7902 |
container_title | |
container_volume | |
creator | Fanggeng Zhao Jinyan Dong Sujian Li Jiangsheng Sun |
description | In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms. |
doi_str_mv | 10.1109/WCICA.2008.4594163 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4594163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4594163</ieee_id><sourcerecordid>4594163</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b277faa9165d21ed8d1706d8b5b0b221cb303eb5ec9308debb946442a8e3e8393</originalsourceid><addsrcrecordid>eNpNUF1LwzAUjchAN_cH9CV_oDVfTZvHUdQJA18UH0fS3HaRJiltmMxfb8WB3od7OJzDuZyL0C0lOaVE3b_Xz_UmZ4RUuSiUoJJfoCUVTAhGqRCXf4TLBVr-GBUhsiRXaD1NH2QeUXCp5DUaNgE7P4zxCBbrkHAT-xhOOA7Jefelk4sB676Lo0sHjz_njcEbsHb2dxAgueaf3sYRpwPgNOoj9C50eNI9TF4HPN8wPfgbtGh1P8H6jCv09vjwWm-z3cvT3GqXOVoWKTOsLFutFZWFZRRsZWlJpK1MYYhhjDaGEw6mgEZxUlkwRgk5V9YVcKi44it095vrAGA_jM7r8bQ_v4t_A9FeXvU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fanggeng Zhao ; Jinyan Dong ; Sujian Li ; Jiangsheng Sun</creator><creatorcontrib>Fanggeng Zhao ; Jinyan Dong ; Sujian Li ; Jiangsheng Sun</creatorcontrib><description>In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.</description><identifier>ISBN: 1424421136</identifier><identifier>ISBN: 9781424421138</identifier><identifier>EISBN: 1424421144</identifier><identifier>EISBN: 9781424421145</identifier><identifier>DOI: 10.1109/WCICA.2008.4594163</identifier><identifier>LCCN: 2008900670</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Cities and towns ; Gallium ; Genetic algorithm ; Genetic algorithms ; Optimization ; Traveling salesman problem ; Traveling salesman problems</subject><ispartof>2008 7th World Congress on Intelligent Control and Automation, 2008, p.7902-7906</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4594163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4594163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Jinyan Dong</creatorcontrib><creatorcontrib>Sujian Li</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><title>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</title><title>2008 7th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Cities and towns</subject><subject>Gallium</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Traveling salesman problem</subject><subject>Traveling salesman problems</subject><isbn>1424421136</isbn><isbn>9781424421138</isbn><isbn>1424421144</isbn><isbn>9781424421145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUF1LwzAUjchAN_cH9CV_oDVfTZvHUdQJA18UH0fS3HaRJiltmMxfb8WB3od7OJzDuZyL0C0lOaVE3b_Xz_UmZ4RUuSiUoJJfoCUVTAhGqRCXf4TLBVr-GBUhsiRXaD1NH2QeUXCp5DUaNgE7P4zxCBbrkHAT-xhOOA7Jefelk4sB676Lo0sHjz_njcEbsHb2dxAgueaf3sYRpwPgNOoj9C50eNI9TF4HPN8wPfgbtGh1P8H6jCv09vjwWm-z3cvT3GqXOVoWKTOsLFutFZWFZRRsZWlJpK1MYYhhjDaGEw6mgEZxUlkwRgk5V9YVcKi44it095vrAGA_jM7r8bQ_v4t_A9FeXvU</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Fanggeng Zhao</creator><creator>Jinyan Dong</creator><creator>Sujian Li</creator><creator>Jiangsheng Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</title><author>Fanggeng Zhao ; Jinyan Dong ; Sujian Li ; Jiangsheng Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b277faa9165d21ed8d1706d8b5b0b221cb303eb5ec9308debb946442a8e3e8393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Cities and towns</topic><topic>Gallium</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Traveling salesman problem</topic><topic>Traveling salesman problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Jinyan Dong</creatorcontrib><creatorcontrib>Sujian Li</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fanggeng Zhao</au><au>Jinyan Dong</au><au>Sujian Li</au><au>Jiangsheng Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</atitle><btitle>2008 7th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2008-06</date><risdate>2008</risdate><spage>7902</spage><epage>7906</epage><pages>7902-7906</pages><isbn>1424421136</isbn><isbn>9781424421138</isbn><eisbn>1424421144</eisbn><eisbn>9781424421145</eisbn><abstract>In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2008.4594163</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421136 |
ispartof | 2008 7th World Congress on Intelligent Control and Automation, 2008, p.7902-7906 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4594163 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Ant colony optimization Cities and towns Gallium Genetic algorithm Genetic algorithms Optimization Traveling salesman problem Traveling salesman problems |
title | An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20ant%20colony%20optimization%20algorithm%20with%20embedded%20genetic%20algorithm%20for%20the%20traveling%20salesman%20problem&rft.btitle=2008%207th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Fanggeng%20Zhao&rft.date=2008-06&rft.spage=7902&rft.epage=7906&rft.pages=7902-7906&rft.isbn=1424421136&rft.isbn_list=9781424421138&rft_id=info:doi/10.1109/WCICA.2008.4594163&rft_dat=%3Cieee_6IE%3E4594163%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421144&rft.eisbn_list=9781424421145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4594163&rfr_iscdi=true |