An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem

In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fanggeng Zhao, Jinyan Dong, Sujian Li, Jiangsheng Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7906
container_issue
container_start_page 7902
container_title
container_volume
creator Fanggeng Zhao
Jinyan Dong
Sujian Li
Jiangsheng Sun
description In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.
doi_str_mv 10.1109/WCICA.2008.4594163
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4594163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4594163</ieee_id><sourcerecordid>4594163</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b277faa9165d21ed8d1706d8b5b0b221cb303eb5ec9308debb946442a8e3e8393</originalsourceid><addsrcrecordid>eNpNUF1LwzAUjchAN_cH9CV_oDVfTZvHUdQJA18UH0fS3HaRJiltmMxfb8WB3od7OJzDuZyL0C0lOaVE3b_Xz_UmZ4RUuSiUoJJfoCUVTAhGqRCXf4TLBVr-GBUhsiRXaD1NH2QeUXCp5DUaNgE7P4zxCBbrkHAT-xhOOA7Jefelk4sB676Lo0sHjz_njcEbsHb2dxAgueaf3sYRpwPgNOoj9C50eNI9TF4HPN8wPfgbtGh1P8H6jCv09vjwWm-z3cvT3GqXOVoWKTOsLFutFZWFZRRsZWlJpK1MYYhhjDaGEw6mgEZxUlkwRgk5V9YVcKi44it095vrAGA_jM7r8bQ_v4t_A9FeXvU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fanggeng Zhao ; Jinyan Dong ; Sujian Li ; Jiangsheng Sun</creator><creatorcontrib>Fanggeng Zhao ; Jinyan Dong ; Sujian Li ; Jiangsheng Sun</creatorcontrib><description>In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.</description><identifier>ISBN: 1424421136</identifier><identifier>ISBN: 9781424421138</identifier><identifier>EISBN: 1424421144</identifier><identifier>EISBN: 9781424421145</identifier><identifier>DOI: 10.1109/WCICA.2008.4594163</identifier><identifier>LCCN: 2008900670</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Cities and towns ; Gallium ; Genetic algorithm ; Genetic algorithms ; Optimization ; Traveling salesman problem ; Traveling salesman problems</subject><ispartof>2008 7th World Congress on Intelligent Control and Automation, 2008, p.7902-7906</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4594163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4594163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Jinyan Dong</creatorcontrib><creatorcontrib>Sujian Li</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><title>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</title><title>2008 7th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Cities and towns</subject><subject>Gallium</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Traveling salesman problem</subject><subject>Traveling salesman problems</subject><isbn>1424421136</isbn><isbn>9781424421138</isbn><isbn>1424421144</isbn><isbn>9781424421145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUF1LwzAUjchAN_cH9CV_oDVfTZvHUdQJA18UH0fS3HaRJiltmMxfb8WB3od7OJzDuZyL0C0lOaVE3b_Xz_UmZ4RUuSiUoJJfoCUVTAhGqRCXf4TLBVr-GBUhsiRXaD1NH2QeUXCp5DUaNgE7P4zxCBbrkHAT-xhOOA7Jefelk4sB676Lo0sHjz_njcEbsHb2dxAgueaf3sYRpwPgNOoj9C50eNI9TF4HPN8wPfgbtGh1P8H6jCv09vjwWm-z3cvT3GqXOVoWKTOsLFutFZWFZRRsZWlJpK1MYYhhjDaGEw6mgEZxUlkwRgk5V9YVcKi44it095vrAGA_jM7r8bQ_v4t_A9FeXvU</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Fanggeng Zhao</creator><creator>Jinyan Dong</creator><creator>Sujian Li</creator><creator>Jiangsheng Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</title><author>Fanggeng Zhao ; Jinyan Dong ; Sujian Li ; Jiangsheng Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b277faa9165d21ed8d1706d8b5b0b221cb303eb5ec9308debb946442a8e3e8393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Cities and towns</topic><topic>Gallium</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Traveling salesman problem</topic><topic>Traveling salesman problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Jinyan Dong</creatorcontrib><creatorcontrib>Sujian Li</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fanggeng Zhao</au><au>Jinyan Dong</au><au>Sujian Li</au><au>Jiangsheng Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem</atitle><btitle>2008 7th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2008-06</date><risdate>2008</risdate><spage>7902</spage><epage>7906</epage><pages>7902-7906</pages><isbn>1424421136</isbn><isbn>9781424421138</isbn><eisbn>1424421144</eisbn><eisbn>9781424421145</eisbn><abstract>In this paper we proposed an improved ant colony optimization algorithm with embedded genetic algorithm to solve the traveling salesman problem. The main idea is to let genetic algorithm simulate the consulting mechanism, which may have more chances to find a better solution, to optimize the solutions found by the ants. In the proposed algorithm, we employed a new greedy way of solution construction and designed an improved crossover operator for consultation in the embedded genetic algorithm. Experimental results showed that the proposed algorithm could find better solutions of benchmark instances within fewer iterations than existing ant colony algorithms.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2008.4594163</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421136
ispartof 2008 7th World Congress on Intelligent Control and Automation, 2008, p.7902-7906
issn
language eng
recordid cdi_ieee_primary_4594163
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Ant colony optimization
Cities and towns
Gallium
Genetic algorithm
Genetic algorithms
Optimization
Traveling salesman problem
Traveling salesman problems
title An improved ant colony optimization algorithm with embedded genetic algorithm for the traveling salesman problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20ant%20colony%20optimization%20algorithm%20with%20embedded%20genetic%20algorithm%20for%20the%20traveling%20salesman%20problem&rft.btitle=2008%207th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Fanggeng%20Zhao&rft.date=2008-06&rft.spage=7902&rft.epage=7906&rft.pages=7902-7906&rft.isbn=1424421136&rft.isbn_list=9781424421138&rft_id=info:doi/10.1109/WCICA.2008.4594163&rft_dat=%3Cieee_6IE%3E4594163%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421144&rft.eisbn_list=9781424421145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4594163&rfr_iscdi=true