Study on automatic detection and recognition algorithms for vehicles and license plates using LS-SVM

Based on pattern recognition theory and least squares support vector machine(LS-SVM) technology, automatic detection, location, segmentation and recognition of vehicles and license plates characters are discussed. A new multi-sorts classification method-binary exponent classification is proposed. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guangying Ge, Xinzong Bao, Jing Ge
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3765
container_issue
container_start_page 3760
container_title
container_volume
creator Guangying Ge
Xinzong Bao
Jing Ge
description Based on pattern recognition theory and least squares support vector machine(LS-SVM) technology, automatic detection, location, segmentation and recognition of vehicles and license plates characters are discussed. A new multi-sorts classification method-binary exponent classification is proposed. By comparing LS-SVM with BP neural network in vehicle and license plates pattern recognition and classification. Experimental results showed that SVM improve recognition rate and can avoid the problem of the local optimal solution of BP network, and therefore has more practicability.
doi_str_mv 10.1109/WCICA.2008.4593528
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4593528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4593528</ieee_id><sourcerecordid>4593528</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-815a6325cd48dce2802490946d32cf691085235802bb14c43890bdcb2e51218b3</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhUekoK39A7qZP5A4784sJagVKi7iY1mSmZt0JI-SmQj996a24NlczsfhwLkI3VKSUkrM_Vf2kj2kjBCdCmm4ZPoCzalgQjBKhbj8N1zN0PwYNISoFblCyxC-ySQhuTLqGrk8ju6A-w4XY-zbInqLHUSw0R9Z5_AAtq87f_JN3Q8-7tqAq37AP7DztoHwl2u8hS4A3jdFnNAYfFfjTZ7kn683aFYVTYDl-S7Qx9Pje7ZONm_P05JN4ulKxkRTWSjOpHVCOwtMEyYMMUI5zmylDCVaMi4nXJZUWMGnVaWzJQNJGdUlX6C7U68HgO1-8G0xHLbnF_Ff7kRYJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on automatic detection and recognition algorithms for vehicles and license plates using LS-SVM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guangying Ge ; Xinzong Bao ; Jing Ge</creator><creatorcontrib>Guangying Ge ; Xinzong Bao ; Jing Ge</creatorcontrib><description>Based on pattern recognition theory and least squares support vector machine(LS-SVM) technology, automatic detection, location, segmentation and recognition of vehicles and license plates characters are discussed. A new multi-sorts classification method-binary exponent classification is proposed. By comparing LS-SVM with BP neural network in vehicle and license plates pattern recognition and classification. Experimental results showed that SVM improve recognition rate and can avoid the problem of the local optimal solution of BP network, and therefore has more practicability.</description><identifier>ISBN: 1424421136</identifier><identifier>ISBN: 9781424421138</identifier><identifier>EISBN: 1424421144</identifier><identifier>EISBN: 9781424421145</identifier><identifier>DOI: 10.1109/WCICA.2008.4593528</identifier><identifier>LCCN: 2008900670</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; binary exponent classification ; Character recognition ; Least Squares Support Vector Machines (LS-SVM) ; Nickel ; Pattern recognition ; Support vector machine classification ; Support vector machines ; Vehicles ; Vehicles and License Plates detection and recognition</subject><ispartof>2008 7th World Congress on Intelligent Control and Automation, 2008, p.3760-3765</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4593528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4593528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guangying Ge</creatorcontrib><creatorcontrib>Xinzong Bao</creatorcontrib><creatorcontrib>Jing Ge</creatorcontrib><title>Study on automatic detection and recognition algorithms for vehicles and license plates using LS-SVM</title><title>2008 7th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>Based on pattern recognition theory and least squares support vector machine(LS-SVM) technology, automatic detection, location, segmentation and recognition of vehicles and license plates characters are discussed. A new multi-sorts classification method-binary exponent classification is proposed. By comparing LS-SVM with BP neural network in vehicle and license plates pattern recognition and classification. Experimental results showed that SVM improve recognition rate and can avoid the problem of the local optimal solution of BP network, and therefore has more practicability.</description><subject>Artificial neural networks</subject><subject>binary exponent classification</subject><subject>Character recognition</subject><subject>Least Squares Support Vector Machines (LS-SVM)</subject><subject>Nickel</subject><subject>Pattern recognition</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Vehicles</subject><subject>Vehicles and License Plates detection and recognition</subject><isbn>1424421136</isbn><isbn>9781424421138</isbn><isbn>1424421144</isbn><isbn>9781424421145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLw0AUhUekoK39A7qZP5A4784sJagVKi7iY1mSmZt0JI-SmQj996a24NlczsfhwLkI3VKSUkrM_Vf2kj2kjBCdCmm4ZPoCzalgQjBKhbj8N1zN0PwYNISoFblCyxC-ySQhuTLqGrk8ju6A-w4XY-zbInqLHUSw0R9Z5_AAtq87f_JN3Q8-7tqAq37AP7DztoHwl2u8hS4A3jdFnNAYfFfjTZ7kn683aFYVTYDl-S7Qx9Pje7ZONm_P05JN4ulKxkRTWSjOpHVCOwtMEyYMMUI5zmylDCVaMi4nXJZUWMGnVaWzJQNJGdUlX6C7U68HgO1-8G0xHLbnF_Ff7kRYJw</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Guangying Ge</creator><creator>Xinzong Bao</creator><creator>Jing Ge</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Study on automatic detection and recognition algorithms for vehicles and license plates using LS-SVM</title><author>Guangying Ge ; Xinzong Bao ; Jing Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-815a6325cd48dce2802490946d32cf691085235802bb14c43890bdcb2e51218b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>binary exponent classification</topic><topic>Character recognition</topic><topic>Least Squares Support Vector Machines (LS-SVM)</topic><topic>Nickel</topic><topic>Pattern recognition</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Vehicles</topic><topic>Vehicles and License Plates detection and recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Guangying Ge</creatorcontrib><creatorcontrib>Xinzong Bao</creatorcontrib><creatorcontrib>Jing Ge</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guangying Ge</au><au>Xinzong Bao</au><au>Jing Ge</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on automatic detection and recognition algorithms for vehicles and license plates using LS-SVM</atitle><btitle>2008 7th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2008-06</date><risdate>2008</risdate><spage>3760</spage><epage>3765</epage><pages>3760-3765</pages><isbn>1424421136</isbn><isbn>9781424421138</isbn><eisbn>1424421144</eisbn><eisbn>9781424421145</eisbn><abstract>Based on pattern recognition theory and least squares support vector machine(LS-SVM) technology, automatic detection, location, segmentation and recognition of vehicles and license plates characters are discussed. A new multi-sorts classification method-binary exponent classification is proposed. By comparing LS-SVM with BP neural network in vehicle and license plates pattern recognition and classification. Experimental results showed that SVM improve recognition rate and can avoid the problem of the local optimal solution of BP network, and therefore has more practicability.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2008.4593528</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421136
ispartof 2008 7th World Congress on Intelligent Control and Automation, 2008, p.3760-3765
issn
language chi ; eng
recordid cdi_ieee_primary_4593528
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
binary exponent classification
Character recognition
Least Squares Support Vector Machines (LS-SVM)
Nickel
Pattern recognition
Support vector machine classification
Support vector machines
Vehicles
Vehicles and License Plates detection and recognition
title Study on automatic detection and recognition algorithms for vehicles and license plates using LS-SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20automatic%20detection%20and%20recognition%20algorithms%20for%20vehicles%20and%20license%20plates%20using%20LS-SVM&rft.btitle=2008%207th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Guangying%20Ge&rft.date=2008-06&rft.spage=3760&rft.epage=3765&rft.pages=3760-3765&rft.isbn=1424421136&rft.isbn_list=9781424421138&rft_id=info:doi/10.1109/WCICA.2008.4593528&rft_dat=%3Cieee_6IE%3E4593528%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421144&rft.eisbn_list=9781424421145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4593528&rfr_iscdi=true