The role of magnetic topology change in development of ablation streams in wire arrays

This paper investigates the influence of the magnetic field topology and the global field penetration time on the ablation dynamics of cylindrical wire array Z-pinches. 3D resistive MHD simulation results with the GORGON code suggest that a change in the global magnetic field topology is critical in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Greenly, J.B., Martin, M.R., Seyler, C.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title
container_volume
creator Greenly, J.B.
Martin, M.R.
Seyler, C.E.
description This paper investigates the influence of the magnetic field topology and the global field penetration time on the ablation dynamics of cylindrical wire array Z-pinches. 3D resistive MHD simulation results with the GORGON code suggest that a change in the global magnetic field topology is critical in initiating wire array ablation. The simulations show a characteristic evolution in the development of streams of ablated material ejected from the wires toward the array axis. In simulations of tungsten arrays, the fundamental behavior occurs in two steps. The first is the development of coronal plasma that is trapped around the wire core in closed "local" magnetic flux. This coronal mass, together with the closed flux, is then accelerated inward after a certain "dwell" time, leaving behind a radially distributed current density with entirely open "global" magnetic field lines, producing smooth, distributed acceleration of ablated plasma inward from the wire core until the onset of the final implosion.These simulation results are investigated experimentally by using B-dot probes to track the evolution of the field over time and space in wire arrays on the Cornell COBRA accelerator.The field radially inward from a wire initially grows in the "local" direction, then after a dwell time reverses and grows in the global direction. The time of reversal is retarded at further inward radial positions. Thus the local field is advected inward, with an inferred velocity typical of ablation streams.
doi_str_mv 10.1109/PLASMA.2008.4590763
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4590763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4590763</ieee_id><sourcerecordid>4590763</sourcerecordid><originalsourceid>FETCH-ieee_primary_45907633</originalsourceid><addsrcrecordid>eNp9j8tKAzEUho-XgqP2CbrJC8z05DKXLIsoXSgILW5LrKfTSCYZkqDM22uhuHT1w_d9mx9gwbHiHPXy9Xm1eVlVArGrVK2xbeQF3HIllOJaIr-EQtRtU7YCu6s_IXR3DQW2Ekv9C2ZQdLxslJK8voF5Sp-IyHXTopYFvG2PxGJwxMKBDab3lO2e5TAGF_qJ7Y_G98SsZx_0RS6MA_l8Ss27M9kGz1KOZIZ0Sr5tJGZiNFO6h9nBuETz897B4ulx-7AuLRHtxmgHE6fd-ZP83_4AqfhJTg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The role of magnetic topology change in development of ablation streams in wire arrays</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Greenly, J.B. ; Martin, M.R. ; Seyler, C.E.</creator><creatorcontrib>Greenly, J.B. ; Martin, M.R. ; Seyler, C.E.</creatorcontrib><description>This paper investigates the influence of the magnetic field topology and the global field penetration time on the ablation dynamics of cylindrical wire array Z-pinches. 3D resistive MHD simulation results with the GORGON code suggest that a change in the global magnetic field topology is critical in initiating wire array ablation. The simulations show a characteristic evolution in the development of streams of ablated material ejected from the wires toward the array axis. In simulations of tungsten arrays, the fundamental behavior occurs in two steps. The first is the development of coronal plasma that is trapped around the wire core in closed "local" magnetic flux. This coronal mass, together with the closed flux, is then accelerated inward after a certain "dwell" time, leaving behind a radially distributed current density with entirely open "global" magnetic field lines, producing smooth, distributed acceleration of ablated plasma inward from the wire core until the onset of the final implosion.These simulation results are investigated experimentally by using B-dot probes to track the evolution of the field over time and space in wire arrays on the Cornell COBRA accelerator.The field radially inward from a wire initially grows in the "local" direction, then after a dwell time reverses and grows in the global direction. The time of reversal is retarded at further inward radial positions. Thus the local field is advected inward, with an inferred velocity typical of ablation streams.</description><identifier>ISSN: 0730-9244</identifier><identifier>ISBN: 1424419298</identifier><identifier>ISBN: 9781424419296</identifier><identifier>EISSN: 2576-7208</identifier><identifier>EISBN: 1424419301</identifier><identifier>EISBN: 9781424419302</identifier><identifier>DOI: 10.1109/PLASMA.2008.4590763</identifier><identifier>LCCN: 81-644315</identifier><language>eng</language><publisher>IEEE</publisher><subject>Evolution (biology) ; Magnetic cores ; Magnetic fields ; Plasmas ; Probes ; Topology ; Wire</subject><ispartof>2008 IEEE 35th International Conference on Plasma Science, 2008, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4590763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4590763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Greenly, J.B.</creatorcontrib><creatorcontrib>Martin, M.R.</creatorcontrib><creatorcontrib>Seyler, C.E.</creatorcontrib><title>The role of magnetic topology change in development of ablation streams in wire arrays</title><title>2008 IEEE 35th International Conference on Plasma Science</title><addtitle>PLASMA</addtitle><description>This paper investigates the influence of the magnetic field topology and the global field penetration time on the ablation dynamics of cylindrical wire array Z-pinches. 3D resistive MHD simulation results with the GORGON code suggest that a change in the global magnetic field topology is critical in initiating wire array ablation. The simulations show a characteristic evolution in the development of streams of ablated material ejected from the wires toward the array axis. In simulations of tungsten arrays, the fundamental behavior occurs in two steps. The first is the development of coronal plasma that is trapped around the wire core in closed "local" magnetic flux. This coronal mass, together with the closed flux, is then accelerated inward after a certain "dwell" time, leaving behind a radially distributed current density with entirely open "global" magnetic field lines, producing smooth, distributed acceleration of ablated plasma inward from the wire core until the onset of the final implosion.These simulation results are investigated experimentally by using B-dot probes to track the evolution of the field over time and space in wire arrays on the Cornell COBRA accelerator.The field radially inward from a wire initially grows in the "local" direction, then after a dwell time reverses and grows in the global direction. The time of reversal is retarded at further inward radial positions. Thus the local field is advected inward, with an inferred velocity typical of ablation streams.</description><subject>Evolution (biology)</subject><subject>Magnetic cores</subject><subject>Magnetic fields</subject><subject>Plasmas</subject><subject>Probes</subject><subject>Topology</subject><subject>Wire</subject><issn>0730-9244</issn><issn>2576-7208</issn><isbn>1424419298</isbn><isbn>9781424419296</isbn><isbn>1424419301</isbn><isbn>9781424419302</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j8tKAzEUho-XgqP2CbrJC8z05DKXLIsoXSgILW5LrKfTSCYZkqDM22uhuHT1w_d9mx9gwbHiHPXy9Xm1eVlVArGrVK2xbeQF3HIllOJaIr-EQtRtU7YCu6s_IXR3DQW2Ekv9C2ZQdLxslJK8voF5Sp-IyHXTopYFvG2PxGJwxMKBDab3lO2e5TAGF_qJ7Y_G98SsZx_0RS6MA_l8Ss27M9kGz1KOZIZ0Sr5tJGZiNFO6h9nBuETz897B4ulx-7AuLRHtxmgHE6fd-ZP83_4AqfhJTg</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Greenly, J.B.</creator><creator>Martin, M.R.</creator><creator>Seyler, C.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>The role of magnetic topology change in development of ablation streams in wire arrays</title><author>Greenly, J.B. ; Martin, M.R. ; Seyler, C.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_45907633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Evolution (biology)</topic><topic>Magnetic cores</topic><topic>Magnetic fields</topic><topic>Plasmas</topic><topic>Probes</topic><topic>Topology</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenly, J.B.</creatorcontrib><creatorcontrib>Martin, M.R.</creatorcontrib><creatorcontrib>Seyler, C.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Greenly, J.B.</au><au>Martin, M.R.</au><au>Seyler, C.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The role of magnetic topology change in development of ablation streams in wire arrays</atitle><btitle>2008 IEEE 35th International Conference on Plasma Science</btitle><stitle>PLASMA</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0730-9244</issn><eissn>2576-7208</eissn><isbn>1424419298</isbn><isbn>9781424419296</isbn><eisbn>1424419301</eisbn><eisbn>9781424419302</eisbn><abstract>This paper investigates the influence of the magnetic field topology and the global field penetration time on the ablation dynamics of cylindrical wire array Z-pinches. 3D resistive MHD simulation results with the GORGON code suggest that a change in the global magnetic field topology is critical in initiating wire array ablation. The simulations show a characteristic evolution in the development of streams of ablated material ejected from the wires toward the array axis. In simulations of tungsten arrays, the fundamental behavior occurs in two steps. The first is the development of coronal plasma that is trapped around the wire core in closed "local" magnetic flux. This coronal mass, together with the closed flux, is then accelerated inward after a certain "dwell" time, leaving behind a radially distributed current density with entirely open "global" magnetic field lines, producing smooth, distributed acceleration of ablated plasma inward from the wire core until the onset of the final implosion.These simulation results are investigated experimentally by using B-dot probes to track the evolution of the field over time and space in wire arrays on the Cornell COBRA accelerator.The field radially inward from a wire initially grows in the "local" direction, then after a dwell time reverses and grows in the global direction. The time of reversal is retarded at further inward radial positions. Thus the local field is advected inward, with an inferred velocity typical of ablation streams.</abstract><pub>IEEE</pub><doi>10.1109/PLASMA.2008.4590763</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0730-9244
ispartof 2008 IEEE 35th International Conference on Plasma Science, 2008, p.1-1
issn 0730-9244
2576-7208
language eng
recordid cdi_ieee_primary_4590763
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Evolution (biology)
Magnetic cores
Magnetic fields
Plasmas
Probes
Topology
Wire
title The role of magnetic topology change in development of ablation streams in wire arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20role%20of%20magnetic%20topology%20change%20in%20development%20of%20ablation%20streams%20in%20wire%20arrays&rft.btitle=2008%20IEEE%2035th%20International%20Conference%20on%20Plasma%20Science&rft.au=Greenly,%20J.B.&rft.date=2008-06&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0730-9244&rft.eissn=2576-7208&rft.isbn=1424419298&rft.isbn_list=9781424419296&rft_id=info:doi/10.1109/PLASMA.2008.4590763&rft_dat=%3Cieee_6IE%3E4590763%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424419301&rft.eisbn_list=9781424419302&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4590763&rfr_iscdi=true