Novel and cost-efficient single metallic silicide integration solution with dual Schottky-barrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance

We have developed a novel and cost-efficient silicide integration solution to achieve a hole barrier height of 215 meV and electron barrier height of 665 meV simultaneously with a single metallic silicide based on aluminum inter-diffusion. It is proposed that aluminum diffuses into PtSi and forms an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, R.T-P., Koh, A.T-Y., Wei-Wei Fang, Kian-Ming Tan, Lim, A.E-J., Tsung-Yang Liow, Chow Shue-Yin, Yong, A.M., Hoong Shing Wong, Guo-Qiang Lo, Samudra, G.S., Dong-Zhi Chi, Yee-Chia Yeo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue
container_start_page 28
container_title
container_volume
creator Lee, R.T-P.
Koh, A.T-Y.
Wei-Wei Fang
Kian-Ming Tan
Lim, A.E-J.
Tsung-Yang Liow
Chow Shue-Yin
Yong, A.M.
Hoong Shing Wong
Guo-Qiang Lo
Samudra, G.S.
Dong-Zhi Chi
Yee-Chia Yeo
description We have developed a novel and cost-efficient silicide integration solution to achieve a hole barrier height of 215 meV and electron barrier height of 665 meV simultaneously with a single metallic silicide based on aluminum inter-diffusion. It is proposed that aluminum diffuses into PtSi and forms an alloy, which lowers the electron barrier height of PtSi due to a change in the intrinsic PtSi workfunction. Additionally, we have integrated platinum germanosilicide with an ultra-low hole barrier height of 215 meV in P-FinFETs to provide a 21% enhancement in drive current performance, which is attributed to the 20% reduction in series resistance. We have also ascertained the compatibility of PtSiGe with laser thermal annealing for further performance enhancement.
doi_str_mv 10.1109/VLSIT.2008.4588551
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4588551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4588551</ieee_id><sourcerecordid>4588551</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b5208569a8629c34c0f225816d6e92eb5b1ac1b07148b20034b9dacc957cd1673</originalsourceid><addsrcrecordid>eNo1kU1OwzAQhY0AiQK9AGx8gRTbsRN7iSp-KhW6aIXYIceZNAbHqRynqGfjcqS0zGLmPWnet5hB6IaSCaVE3b3Nl7PVhBEiJ1xIKQQ9QWOVS8oZ51SSVJ2iy3_D3s_QiOQ8TajI2DkaKZJkQySlF2jcdZ9kKC5SqvIR-nltt-Cw9iU2bRcTqCprLPiIO-vXDnADUTtnzeCHbkvA1kdYBx1t63HXuv5PfNtY47LXDi9N3cb4tUsKHYKFgLWpLWyhxMUOa9c31vfNHyQkpa2qvtvnqzbgR-sfH1Z4-rJY4gim9q1r17sDGnytvRkgGwjDbrM31-i80q6D8XFeodWQnz4n88XTbHo_T6wiMSkEI1JkSsuMKZNyQyrGhKRZmYFiUIiCakMLklMui-HCKS9UqY1RIjclzfL0Ct0esBYAPjbBNjrsPo5vSH8BMil8Zg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Novel and cost-efficient single metallic silicide integration solution with dual Schottky-barrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lee, R.T-P. ; Koh, A.T-Y. ; Wei-Wei Fang ; Kian-Ming Tan ; Lim, A.E-J. ; Tsung-Yang Liow ; Chow Shue-Yin ; Yong, A.M. ; Hoong Shing Wong ; Guo-Qiang Lo ; Samudra, G.S. ; Dong-Zhi Chi ; Yee-Chia Yeo</creator><creatorcontrib>Lee, R.T-P. ; Koh, A.T-Y. ; Wei-Wei Fang ; Kian-Ming Tan ; Lim, A.E-J. ; Tsung-Yang Liow ; Chow Shue-Yin ; Yong, A.M. ; Hoong Shing Wong ; Guo-Qiang Lo ; Samudra, G.S. ; Dong-Zhi Chi ; Yee-Chia Yeo</creatorcontrib><description>We have developed a novel and cost-efficient silicide integration solution to achieve a hole barrier height of 215 meV and electron barrier height of 665 meV simultaneously with a single metallic silicide based on aluminum inter-diffusion. It is proposed that aluminum diffuses into PtSi and forms an alloy, which lowers the electron barrier height of PtSi due to a change in the intrinsic PtSi workfunction. Additionally, we have integrated platinum germanosilicide with an ultra-low hole barrier height of 215 meV in P-FinFETs to provide a 21% enhancement in drive current performance, which is attributed to the 20% reduction in series resistance. We have also ascertained the compatibility of PtSiGe with laser thermal annealing for further performance enhancement.</description><identifier>ISSN: 0743-1562</identifier><identifier>ISBN: 142441802X</identifier><identifier>ISBN: 9781424418022</identifier><identifier>EISBN: 9781424418039</identifier><identifier>EISBN: 1424418038</identifier><identifier>DOI: 10.1109/VLSIT.2008.4588551</identifier><identifier>LCCN: 90-655131</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annealing ; FinFETs ; Performance evaluation ; Resistance ; Silicides ; Silicon ; Silicon germanium</subject><ispartof>2008 Symposium on VLSI Technology, 2008, p.28-29</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4588551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4588551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, R.T-P.</creatorcontrib><creatorcontrib>Koh, A.T-Y.</creatorcontrib><creatorcontrib>Wei-Wei Fang</creatorcontrib><creatorcontrib>Kian-Ming Tan</creatorcontrib><creatorcontrib>Lim, A.E-J.</creatorcontrib><creatorcontrib>Tsung-Yang Liow</creatorcontrib><creatorcontrib>Chow Shue-Yin</creatorcontrib><creatorcontrib>Yong, A.M.</creatorcontrib><creatorcontrib>Hoong Shing Wong</creatorcontrib><creatorcontrib>Guo-Qiang Lo</creatorcontrib><creatorcontrib>Samudra, G.S.</creatorcontrib><creatorcontrib>Dong-Zhi Chi</creatorcontrib><creatorcontrib>Yee-Chia Yeo</creatorcontrib><title>Novel and cost-efficient single metallic silicide integration solution with dual Schottky-barrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance</title><title>2008 Symposium on VLSI Technology</title><addtitle>VLSIT</addtitle><description>We have developed a novel and cost-efficient silicide integration solution to achieve a hole barrier height of 215 meV and electron barrier height of 665 meV simultaneously with a single metallic silicide based on aluminum inter-diffusion. It is proposed that aluminum diffuses into PtSi and forms an alloy, which lowers the electron barrier height of PtSi due to a change in the intrinsic PtSi workfunction. Additionally, we have integrated platinum germanosilicide with an ultra-low hole barrier height of 215 meV in P-FinFETs to provide a 21% enhancement in drive current performance, which is attributed to the 20% reduction in series resistance. We have also ascertained the compatibility of PtSiGe with laser thermal annealing for further performance enhancement.</description><subject>Annealing</subject><subject>FinFETs</subject><subject>Performance evaluation</subject><subject>Resistance</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Silicon germanium</subject><issn>0743-1562</issn><isbn>142441802X</isbn><isbn>9781424418022</isbn><isbn>9781424418039</isbn><isbn>1424418038</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kU1OwzAQhY0AiQK9AGx8gRTbsRN7iSp-KhW6aIXYIceZNAbHqRynqGfjcqS0zGLmPWnet5hB6IaSCaVE3b3Nl7PVhBEiJ1xIKQQ9QWOVS8oZ51SSVJ2iy3_D3s_QiOQ8TajI2DkaKZJkQySlF2jcdZ9kKC5SqvIR-nltt-Cw9iU2bRcTqCprLPiIO-vXDnADUTtnzeCHbkvA1kdYBx1t63HXuv5PfNtY47LXDi9N3cb4tUsKHYKFgLWpLWyhxMUOa9c31vfNHyQkpa2qvtvnqzbgR-sfH1Z4-rJY4gim9q1r17sDGnytvRkgGwjDbrM31-i80q6D8XFeodWQnz4n88XTbHo_T6wiMSkEI1JkSsuMKZNyQyrGhKRZmYFiUIiCakMLklMui-HCKS9UqY1RIjclzfL0Ct0esBYAPjbBNjrsPo5vSH8BMil8Zg</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Lee, R.T-P.</creator><creator>Koh, A.T-Y.</creator><creator>Wei-Wei Fang</creator><creator>Kian-Ming Tan</creator><creator>Lim, A.E-J.</creator><creator>Tsung-Yang Liow</creator><creator>Chow Shue-Yin</creator><creator>Yong, A.M.</creator><creator>Hoong Shing Wong</creator><creator>Guo-Qiang Lo</creator><creator>Samudra, G.S.</creator><creator>Dong-Zhi Chi</creator><creator>Yee-Chia Yeo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>Novel and cost-efficient single metallic silicide integration solution with dual Schottky-barrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance</title><author>Lee, R.T-P. ; Koh, A.T-Y. ; Wei-Wei Fang ; Kian-Ming Tan ; Lim, A.E-J. ; Tsung-Yang Liow ; Chow Shue-Yin ; Yong, A.M. ; Hoong Shing Wong ; Guo-Qiang Lo ; Samudra, G.S. ; Dong-Zhi Chi ; Yee-Chia Yeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b5208569a8629c34c0f225816d6e92eb5b1ac1b07148b20034b9dacc957cd1673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Annealing</topic><topic>FinFETs</topic><topic>Performance evaluation</topic><topic>Resistance</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Silicon germanium</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, R.T-P.</creatorcontrib><creatorcontrib>Koh, A.T-Y.</creatorcontrib><creatorcontrib>Wei-Wei Fang</creatorcontrib><creatorcontrib>Kian-Ming Tan</creatorcontrib><creatorcontrib>Lim, A.E-J.</creatorcontrib><creatorcontrib>Tsung-Yang Liow</creatorcontrib><creatorcontrib>Chow Shue-Yin</creatorcontrib><creatorcontrib>Yong, A.M.</creatorcontrib><creatorcontrib>Hoong Shing Wong</creatorcontrib><creatorcontrib>Guo-Qiang Lo</creatorcontrib><creatorcontrib>Samudra, G.S.</creatorcontrib><creatorcontrib>Dong-Zhi Chi</creatorcontrib><creatorcontrib>Yee-Chia Yeo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, R.T-P.</au><au>Koh, A.T-Y.</au><au>Wei-Wei Fang</au><au>Kian-Ming Tan</au><au>Lim, A.E-J.</au><au>Tsung-Yang Liow</au><au>Chow Shue-Yin</au><au>Yong, A.M.</au><au>Hoong Shing Wong</au><au>Guo-Qiang Lo</au><au>Samudra, G.S.</au><au>Dong-Zhi Chi</au><au>Yee-Chia Yeo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel and cost-efficient single metallic silicide integration solution with dual Schottky-barrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance</atitle><btitle>2008 Symposium on VLSI Technology</btitle><stitle>VLSIT</stitle><date>2008-06</date><risdate>2008</risdate><spage>28</spage><epage>29</epage><pages>28-29</pages><issn>0743-1562</issn><isbn>142441802X</isbn><isbn>9781424418022</isbn><eisbn>9781424418039</eisbn><eisbn>1424418038</eisbn><abstract>We have developed a novel and cost-efficient silicide integration solution to achieve a hole barrier height of 215 meV and electron barrier height of 665 meV simultaneously with a single metallic silicide based on aluminum inter-diffusion. It is proposed that aluminum diffuses into PtSi and forms an alloy, which lowers the electron barrier height of PtSi due to a change in the intrinsic PtSi workfunction. Additionally, we have integrated platinum germanosilicide with an ultra-low hole barrier height of 215 meV in P-FinFETs to provide a 21% enhancement in drive current performance, which is attributed to the 20% reduction in series resistance. We have also ascertained the compatibility of PtSiGe with laser thermal annealing for further performance enhancement.</abstract><pub>IEEE</pub><doi>10.1109/VLSIT.2008.4588551</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1562
ispartof 2008 Symposium on VLSI Technology, 2008, p.28-29
issn 0743-1562
language eng
recordid cdi_ieee_primary_4588551
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Annealing
FinFETs
Performance evaluation
Resistance
Silicides
Silicon
Silicon germanium
title Novel and cost-efficient single metallic silicide integration solution with dual Schottky-barrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20and%20cost-efficient%20single%20metallic%20silicide%20integration%20solution%20with%20dual%20Schottky-barrier%20achieved%20by%20aluminum%20inter-diffusion%20for%20FinFET%20CMOS%20technology%20with%20enhanced%20performance&rft.btitle=2008%20Symposium%20on%20VLSI%20Technology&rft.au=Lee,%20R.T-P.&rft.date=2008-06&rft.spage=28&rft.epage=29&rft.pages=28-29&rft.issn=0743-1562&rft.isbn=142441802X&rft.isbn_list=9781424418022&rft_id=info:doi/10.1109/VLSIT.2008.4588551&rft_dat=%3Cieee_6IE%3E4588551%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418039&rft.eisbn_list=1424418038&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4588551&rfr_iscdi=true