Determining students' academic failure profile founded on data mining methods
Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | |
container_start_page | 317 |
container_title | |
container_volume | |
creator | Bresfelean, Vasile Paul Bresfelean, Mihaela Ghisoiu, Nicolae Comes, Calin-Adrian |
description | Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success. |
doi_str_mv | 10.1109/ITI.2008.4588429 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_4588429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4588429</ieee_id><sourcerecordid>20931730</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-57b24183e68c83312a230b3a8a2007886a7db8ac37800fa8841ab0030cab3f013</originalsourceid><addsrcrecordid>eNpVUE1LAzEUjKhgqb0LXnIRT1vfy9ttkqPUqoWKl3oubzeJRvajbLYH_70LLYKnYZgPmBHiBmGOCPZhvV3PFYCZ54UxubJnYma1sQVpJIOUn__jSl-ICRJBhoDqSsxS-gYAtAs7dkzE25MffN_ENrafMg0H59sh3Uuu2PkmVjJwrA-9l_u-C7H2MnSH1nknu1Y6Hlieko0fvjqXrsVl4Dr52Qmn4uN5tV2-Zpv3l_XycZNFBcWQFbpUORryC1MZIlSsCEpiw-MwbcyCtSsNV6QNQOBxJnIJQFBxSQGQpuLu2LvnVHEdem6rmHb7Pjbc_-wUWEJNMPpuj77ovf-TT8fRL56CXW4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining students' academic failure profile founded on data mining methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bresfelean, Vasile Paul ; Bresfelean, Mihaela ; Ghisoiu, Nicolae ; Comes, Calin-Adrian</creator><creatorcontrib>Bresfelean, Vasile Paul ; Bresfelean, Mihaela ; Ghisoiu, Nicolae ; Comes, Calin-Adrian</creatorcontrib><description>Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.</description><identifier>ISSN: 1330-1012</identifier><identifier>ISBN: 9789537138127</identifier><identifier>ISBN: 9537138127</identifier><identifier>EISBN: 9789537138134</identifier><identifier>EISBN: 9537138135</identifier><identifier>DOI: 10.1109/ITI.2008.4588429</identifier><language>eng</language><publisher>Zagreb: IEEE</publisher><subject>Applied sciences ; Classification algorithms ; classification learning ; clustering ; Clustering algorithms ; Computer science; control theory; systems ; Data mining ; Data processing. List processing. Character string processing ; Decision trees ; Exact sciences and technology ; FarthestFirst ; J48 ; Memory organisation. Data processing ; Partitioning algorithms ; Prediction algorithms ; Software ; Training</subject><ispartof>ITI 2008 - 30th International Conference on Information Technology Interfaces, 2008, p.317-322</ispartof><rights>2009 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4588429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27926,54921</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4588429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20931730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bresfelean, Vasile Paul</creatorcontrib><creatorcontrib>Bresfelean, Mihaela</creatorcontrib><creatorcontrib>Ghisoiu, Nicolae</creatorcontrib><creatorcontrib>Comes, Calin-Adrian</creatorcontrib><title>Determining students' academic failure profile founded on data mining methods</title><title>ITI 2008 - 30th International Conference on Information Technology Interfaces</title><addtitle>ITI</addtitle><description>Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.</description><subject>Applied sciences</subject><subject>Classification algorithms</subject><subject>classification learning</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Decision trees</subject><subject>Exact sciences and technology</subject><subject>FarthestFirst</subject><subject>J48</subject><subject>Memory organisation. Data processing</subject><subject>Partitioning algorithms</subject><subject>Prediction algorithms</subject><subject>Software</subject><subject>Training</subject><issn>1330-1012</issn><isbn>9789537138127</isbn><isbn>9537138127</isbn><isbn>9789537138134</isbn><isbn>9537138135</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1LAzEUjKhgqb0LXnIRT1vfy9ttkqPUqoWKl3oubzeJRvajbLYH_70LLYKnYZgPmBHiBmGOCPZhvV3PFYCZ54UxubJnYma1sQVpJIOUn__jSl-ICRJBhoDqSsxS-gYAtAs7dkzE25MffN_ENrafMg0H59sh3Uuu2PkmVjJwrA-9l_u-C7H2MnSH1nknu1Y6Hlieko0fvjqXrsVl4Dr52Qmn4uN5tV2-Zpv3l_XycZNFBcWQFbpUORryC1MZIlSsCEpiw-MwbcyCtSsNV6QNQOBxJnIJQFBxSQGQpuLu2LvnVHEdem6rmHb7Pjbc_-wUWEJNMPpuj77ovf-TT8fRL56CXW4</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Bresfelean, Vasile Paul</creator><creator>Bresfelean, Mihaela</creator><creator>Ghisoiu, Nicolae</creator><creator>Comes, Calin-Adrian</creator><general>IEEE</general><general>University Computing Centre</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>200806</creationdate><title>Determining students' academic failure profile founded on data mining methods</title><author>Bresfelean, Vasile Paul ; Bresfelean, Mihaela ; Ghisoiu, Nicolae ; Comes, Calin-Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-57b24183e68c83312a230b3a8a2007886a7db8ac37800fa8841ab0030cab3f013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Classification algorithms</topic><topic>classification learning</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Decision trees</topic><topic>Exact sciences and technology</topic><topic>FarthestFirst</topic><topic>J48</topic><topic>Memory organisation. Data processing</topic><topic>Partitioning algorithms</topic><topic>Prediction algorithms</topic><topic>Software</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bresfelean, Vasile Paul</creatorcontrib><creatorcontrib>Bresfelean, Mihaela</creatorcontrib><creatorcontrib>Ghisoiu, Nicolae</creatorcontrib><creatorcontrib>Comes, Calin-Adrian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bresfelean, Vasile Paul</au><au>Bresfelean, Mihaela</au><au>Ghisoiu, Nicolae</au><au>Comes, Calin-Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining students' academic failure profile founded on data mining methods</atitle><btitle>ITI 2008 - 30th International Conference on Information Technology Interfaces</btitle><stitle>ITI</stitle><date>2008-06</date><risdate>2008</risdate><spage>317</spage><epage>322</epage><pages>317-322</pages><issn>1330-1012</issn><isbn>9789537138127</isbn><isbn>9537138127</isbn><eisbn>9789537138134</eisbn><eisbn>9537138135</eisbn><abstract>Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.</abstract><cop>Zagreb</cop><pub>IEEE</pub><doi>10.1109/ITI.2008.4588429</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1330-1012 |
ispartof | ITI 2008 - 30th International Conference on Information Technology Interfaces, 2008, p.317-322 |
issn | 1330-1012 |
language | eng |
recordid | cdi_ieee_primary_4588429 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Classification algorithms classification learning clustering Clustering algorithms Computer science control theory systems Data mining Data processing. List processing. Character string processing Decision trees Exact sciences and technology FarthestFirst J48 Memory organisation. Data processing Partitioning algorithms Prediction algorithms Software Training |
title | Determining students' academic failure profile founded on data mining methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20students'%20academic%20failure%20profile%20founded%20on%20data%20mining%20methods&rft.btitle=ITI%202008%20-%2030th%20International%20Conference%20on%20Information%20Technology%20Interfaces&rft.au=Bresfelean,%20Vasile%20Paul&rft.date=2008-06&rft.spage=317&rft.epage=322&rft.pages=317-322&rft.issn=1330-1012&rft.isbn=9789537138127&rft.isbn_list=9537138127&rft_id=info:doi/10.1109/ITI.2008.4588429&rft_dat=%3Cpascalfrancis_6IE%3E20931730%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789537138134&rft.eisbn_list=9537138135&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4588429&rfr_iscdi=true |