Determining students' academic failure profile founded on data mining methods

Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bresfelean, Vasile Paul, Bresfelean, Mihaela, Ghisoiu, Nicolae, Comes, Calin-Adrian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue
container_start_page 317
container_title
container_volume
creator Bresfelean, Vasile Paul
Bresfelean, Mihaela
Ghisoiu, Nicolae
Comes, Calin-Adrian
description Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.
doi_str_mv 10.1109/ITI.2008.4588429
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_4588429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4588429</ieee_id><sourcerecordid>20931730</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-57b24183e68c83312a230b3a8a2007886a7db8ac37800fa8841ab0030cab3f013</originalsourceid><addsrcrecordid>eNpVUE1LAzEUjKhgqb0LXnIRT1vfy9ttkqPUqoWKl3oubzeJRvajbLYH_70LLYKnYZgPmBHiBmGOCPZhvV3PFYCZ54UxubJnYma1sQVpJIOUn__jSl-ICRJBhoDqSsxS-gYAtAs7dkzE25MffN_ENrafMg0H59sh3Uuu2PkmVjJwrA-9l_u-C7H2MnSH1nknu1Y6Hlieko0fvjqXrsVl4Dr52Qmn4uN5tV2-Zpv3l_XycZNFBcWQFbpUORryC1MZIlSsCEpiw-MwbcyCtSsNV6QNQOBxJnIJQFBxSQGQpuLu2LvnVHEdem6rmHb7Pjbc_-wUWEJNMPpuj77ovf-TT8fRL56CXW4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining students' academic failure profile founded on data mining methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bresfelean, Vasile Paul ; Bresfelean, Mihaela ; Ghisoiu, Nicolae ; Comes, Calin-Adrian</creator><creatorcontrib>Bresfelean, Vasile Paul ; Bresfelean, Mihaela ; Ghisoiu, Nicolae ; Comes, Calin-Adrian</creatorcontrib><description>Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.</description><identifier>ISSN: 1330-1012</identifier><identifier>ISBN: 9789537138127</identifier><identifier>ISBN: 9537138127</identifier><identifier>EISBN: 9789537138134</identifier><identifier>EISBN: 9537138135</identifier><identifier>DOI: 10.1109/ITI.2008.4588429</identifier><language>eng</language><publisher>Zagreb: IEEE</publisher><subject>Applied sciences ; Classification algorithms ; classification learning ; clustering ; Clustering algorithms ; Computer science; control theory; systems ; Data mining ; Data processing. List processing. Character string processing ; Decision trees ; Exact sciences and technology ; FarthestFirst ; J48 ; Memory organisation. Data processing ; Partitioning algorithms ; Prediction algorithms ; Software ; Training</subject><ispartof>ITI 2008 - 30th International Conference on Information Technology Interfaces, 2008, p.317-322</ispartof><rights>2009 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4588429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27926,54921</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4588429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20931730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bresfelean, Vasile Paul</creatorcontrib><creatorcontrib>Bresfelean, Mihaela</creatorcontrib><creatorcontrib>Ghisoiu, Nicolae</creatorcontrib><creatorcontrib>Comes, Calin-Adrian</creatorcontrib><title>Determining students' academic failure profile founded on data mining methods</title><title>ITI 2008 - 30th International Conference on Information Technology Interfaces</title><addtitle>ITI</addtitle><description>Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.</description><subject>Applied sciences</subject><subject>Classification algorithms</subject><subject>classification learning</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Decision trees</subject><subject>Exact sciences and technology</subject><subject>FarthestFirst</subject><subject>J48</subject><subject>Memory organisation. Data processing</subject><subject>Partitioning algorithms</subject><subject>Prediction algorithms</subject><subject>Software</subject><subject>Training</subject><issn>1330-1012</issn><isbn>9789537138127</isbn><isbn>9537138127</isbn><isbn>9789537138134</isbn><isbn>9537138135</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1LAzEUjKhgqb0LXnIRT1vfy9ttkqPUqoWKl3oubzeJRvajbLYH_70LLYKnYZgPmBHiBmGOCPZhvV3PFYCZ54UxubJnYma1sQVpJIOUn__jSl-ICRJBhoDqSsxS-gYAtAs7dkzE25MffN_ENrafMg0H59sh3Uuu2PkmVjJwrA-9l_u-C7H2MnSH1nknu1Y6Hlieko0fvjqXrsVl4Dr52Qmn4uN5tV2-Zpv3l_XycZNFBcWQFbpUORryC1MZIlSsCEpiw-MwbcyCtSsNV6QNQOBxJnIJQFBxSQGQpuLu2LvnVHEdem6rmHb7Pjbc_-wUWEJNMPpuj77ovf-TT8fRL56CXW4</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Bresfelean, Vasile Paul</creator><creator>Bresfelean, Mihaela</creator><creator>Ghisoiu, Nicolae</creator><creator>Comes, Calin-Adrian</creator><general>IEEE</general><general>University Computing Centre</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>200806</creationdate><title>Determining students' academic failure profile founded on data mining methods</title><author>Bresfelean, Vasile Paul ; Bresfelean, Mihaela ; Ghisoiu, Nicolae ; Comes, Calin-Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-57b24183e68c83312a230b3a8a2007886a7db8ac37800fa8841ab0030cab3f013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Classification algorithms</topic><topic>classification learning</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Decision trees</topic><topic>Exact sciences and technology</topic><topic>FarthestFirst</topic><topic>J48</topic><topic>Memory organisation. Data processing</topic><topic>Partitioning algorithms</topic><topic>Prediction algorithms</topic><topic>Software</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bresfelean, Vasile Paul</creatorcontrib><creatorcontrib>Bresfelean, Mihaela</creatorcontrib><creatorcontrib>Ghisoiu, Nicolae</creatorcontrib><creatorcontrib>Comes, Calin-Adrian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bresfelean, Vasile Paul</au><au>Bresfelean, Mihaela</au><au>Ghisoiu, Nicolae</au><au>Comes, Calin-Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining students' academic failure profile founded on data mining methods</atitle><btitle>ITI 2008 - 30th International Conference on Information Technology Interfaces</btitle><stitle>ITI</stitle><date>2008-06</date><risdate>2008</risdate><spage>317</spage><epage>322</epage><pages>317-322</pages><issn>1330-1012</issn><isbn>9789537138127</isbn><isbn>9537138127</isbn><eisbn>9789537138134</eisbn><eisbn>9537138135</eisbn><abstract>Exams failure among university students has long fed a large number of debates, many education experts seeking to comprehend and explicate it, and many statisticians have tried to predict it. Understanding, predicting and preventing the academic failure are complex and continuous processes anchored in past and present information collected from scholastic situations and students' surveys, but also on scientific research based on data mining technologies. In the current article the authors illustrate their experiments in the educational area, based on classification learning and data clustering techniques, made in order to draw up the students' profile for exam failure/success.</abstract><cop>Zagreb</cop><pub>IEEE</pub><doi>10.1109/ITI.2008.4588429</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1330-1012
ispartof ITI 2008 - 30th International Conference on Information Technology Interfaces, 2008, p.317-322
issn 1330-1012
language eng
recordid cdi_ieee_primary_4588429
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Classification algorithms
classification learning
clustering
Clustering algorithms
Computer science
control theory
systems
Data mining
Data processing. List processing. Character string processing
Decision trees
Exact sciences and technology
FarthestFirst
J48
Memory organisation. Data processing
Partitioning algorithms
Prediction algorithms
Software
Training
title Determining students' academic failure profile founded on data mining methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20students'%20academic%20failure%20profile%20founded%20on%20data%20mining%20methods&rft.btitle=ITI%202008%20-%2030th%20International%20Conference%20on%20Information%20Technology%20Interfaces&rft.au=Bresfelean,%20Vasile%20Paul&rft.date=2008-06&rft.spage=317&rft.epage=322&rft.pages=317-322&rft.issn=1330-1012&rft.isbn=9789537138127&rft.isbn_list=9537138127&rft_id=info:doi/10.1109/ITI.2008.4588429&rft_dat=%3Cpascalfrancis_6IE%3E20931730%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789537138134&rft.eisbn_list=9537138135&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4588429&rfr_iscdi=true