Context-dependent kernel design for object matching and recognition
The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern rec...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sahbi, H. Audibert, J.-Y. Rabarisoa, J. Keriven, R. |
description | The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels. |
doi_str_mv | 10.1109/CVPR.2008.4587607 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4587607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4587607</ieee_id><sourcerecordid>4587607</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-b065f1adb6c4a943c993fd3f4a19d41cb6cf7db7c264ef95deee509db816dabe3</originalsourceid><addsrcrecordid>eNpVkMtKw0AYhUdUsNQ8gLiZF0icf66ZpQRvUFBE3Za5_BOntpOSZKFvb8FuPJvD-Q6cxSHkClgDwOxN9_Hy2nDG2kaq1mhmTkhlTQuSS8m5FPz0X-bqjCyAaVFrC_aCVNO0YQdJJTToBem6ocz4PdcR91gilpl-4VhwSyNOuS80DSMd_AbDTHduDp-59NSVSEcMQ1_ynIdySc6T205YHX1J3u_v3rrHevX88NTdruoMQpjaM60SuOh1kM5KEawVKYokHdgoIRx4MtGbwLXEZFVERMVs9C3o6DyKJbn-282HZr0f886NP-vjDeIXIBtPpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Context-dependent kernel design for object matching and recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahbi, H. ; Audibert, J.-Y. ; Rabarisoa, J. ; Keriven, R.</creator><creatorcontrib>Sahbi, H. ; Audibert, J.-Y. ; Rabarisoa, J. ; Keriven, R.</creatorcontrib><description>The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424422425</identifier><identifier>ISBN: 1424422426</identifier><identifier>EISBN: 9781424422432</identifier><identifier>EISBN: 1424422434</identifier><identifier>DOI: 10.1109/CVPR.2008.4587607</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Energy measurement ; Face recognition ; Focusing ; Histograms ; Kernel ; Object recognition ; Pattern recognition ; Support vector machines ; Telecommunications</subject><ispartof>2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4587607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4587607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahbi, H.</creatorcontrib><creatorcontrib>Audibert, J.-Y.</creatorcontrib><creatorcontrib>Rabarisoa, J.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><title>Context-dependent kernel design for object matching and recognition</title><title>2008 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.</description><subject>Bioinformatics</subject><subject>Energy measurement</subject><subject>Face recognition</subject><subject>Focusing</subject><subject>Histograms</subject><subject>Kernel</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Support vector machines</subject><subject>Telecommunications</subject><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><isbn>9781424422432</isbn><isbn>1424422434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKw0AYhUdUsNQ8gLiZF0icf66ZpQRvUFBE3Za5_BOntpOSZKFvb8FuPJvD-Q6cxSHkClgDwOxN9_Hy2nDG2kaq1mhmTkhlTQuSS8m5FPz0X-bqjCyAaVFrC_aCVNO0YQdJJTToBem6ocz4PdcR91gilpl-4VhwSyNOuS80DSMd_AbDTHduDp-59NSVSEcMQ1_ynIdySc6T205YHX1J3u_v3rrHevX88NTdruoMQpjaM60SuOh1kM5KEawVKYokHdgoIRx4MtGbwLXEZFVERMVs9C3o6DyKJbn-282HZr0f886NP-vjDeIXIBtPpQ</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Sahbi, H.</creator><creator>Audibert, J.-Y.</creator><creator>Rabarisoa, J.</creator><creator>Keriven, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>Context-dependent kernel design for object matching and recognition</title><author>Sahbi, H. ; Audibert, J.-Y. ; Rabarisoa, J. ; Keriven, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-b065f1adb6c4a943c993fd3f4a19d41cb6cf7db7c264ef95deee509db816dabe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bioinformatics</topic><topic>Energy measurement</topic><topic>Face recognition</topic><topic>Focusing</topic><topic>Histograms</topic><topic>Kernel</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Support vector machines</topic><topic>Telecommunications</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahbi, H.</creatorcontrib><creatorcontrib>Audibert, J.-Y.</creatorcontrib><creatorcontrib>Rabarisoa, J.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahbi, H.</au><au>Audibert, J.-Y.</au><au>Rabarisoa, J.</au><au>Keriven, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Context-dependent kernel design for object matching and recognition</atitle><btitle>2008 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><eisbn>9781424422432</eisbn><eisbn>1424422434</eisbn><abstract>The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2008.4587607</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_4587607 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics Energy measurement Face recognition Focusing Histograms Kernel Object recognition Pattern recognition Support vector machines Telecommunications |
title | Context-dependent kernel design for object matching and recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Context-dependent%20kernel%20design%20for%20object%20matching%20and%20recognition&rft.btitle=2008%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Sahbi,%20H.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424422425&rft.isbn_list=1424422426&rft_id=info:doi/10.1109/CVPR.2008.4587607&rft_dat=%3Cieee_6IE%3E4587607%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422432&rft.eisbn_list=1424422434&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4587607&rfr_iscdi=true |