Context-dependent kernel design for object matching and recognition

The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sahbi, H., Audibert, J.-Y., Rabarisoa, J., Keriven, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Sahbi, H.
Audibert, J.-Y.
Rabarisoa, J.
Keriven, R.
description The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.
doi_str_mv 10.1109/CVPR.2008.4587607
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4587607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4587607</ieee_id><sourcerecordid>4587607</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-b065f1adb6c4a943c993fd3f4a19d41cb6cf7db7c264ef95deee509db816dabe3</originalsourceid><addsrcrecordid>eNpVkMtKw0AYhUdUsNQ8gLiZF0icf66ZpQRvUFBE3Za5_BOntpOSZKFvb8FuPJvD-Q6cxSHkClgDwOxN9_Hy2nDG2kaq1mhmTkhlTQuSS8m5FPz0X-bqjCyAaVFrC_aCVNO0YQdJJTToBem6ocz4PdcR91gilpl-4VhwSyNOuS80DSMd_AbDTHduDp-59NSVSEcMQ1_ynIdySc6T205YHX1J3u_v3rrHevX88NTdruoMQpjaM60SuOh1kM5KEawVKYokHdgoIRx4MtGbwLXEZFVERMVs9C3o6DyKJbn-282HZr0f886NP-vjDeIXIBtPpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Context-dependent kernel design for object matching and recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahbi, H. ; Audibert, J.-Y. ; Rabarisoa, J. ; Keriven, R.</creator><creatorcontrib>Sahbi, H. ; Audibert, J.-Y. ; Rabarisoa, J. ; Keriven, R.</creatorcontrib><description>The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424422425</identifier><identifier>ISBN: 1424422426</identifier><identifier>EISBN: 9781424422432</identifier><identifier>EISBN: 1424422434</identifier><identifier>DOI: 10.1109/CVPR.2008.4587607</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Energy measurement ; Face recognition ; Focusing ; Histograms ; Kernel ; Object recognition ; Pattern recognition ; Support vector machines ; Telecommunications</subject><ispartof>2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4587607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4587607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahbi, H.</creatorcontrib><creatorcontrib>Audibert, J.-Y.</creatorcontrib><creatorcontrib>Rabarisoa, J.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><title>Context-dependent kernel design for object matching and recognition</title><title>2008 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.</description><subject>Bioinformatics</subject><subject>Energy measurement</subject><subject>Face recognition</subject><subject>Focusing</subject><subject>Histograms</subject><subject>Kernel</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Support vector machines</subject><subject>Telecommunications</subject><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><isbn>9781424422432</isbn><isbn>1424422434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKw0AYhUdUsNQ8gLiZF0icf66ZpQRvUFBE3Za5_BOntpOSZKFvb8FuPJvD-Q6cxSHkClgDwOxN9_Hy2nDG2kaq1mhmTkhlTQuSS8m5FPz0X-bqjCyAaVFrC_aCVNO0YQdJJTToBem6ocz4PdcR91gilpl-4VhwSyNOuS80DSMd_AbDTHduDp-59NSVSEcMQ1_ynIdySc6T205YHX1J3u_v3rrHevX88NTdruoMQpjaM60SuOh1kM5KEawVKYokHdgoIRx4MtGbwLXEZFVERMVs9C3o6DyKJbn-282HZr0f886NP-vjDeIXIBtPpQ</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Sahbi, H.</creator><creator>Audibert, J.-Y.</creator><creator>Rabarisoa, J.</creator><creator>Keriven, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>Context-dependent kernel design for object matching and recognition</title><author>Sahbi, H. ; Audibert, J.-Y. ; Rabarisoa, J. ; Keriven, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-b065f1adb6c4a943c993fd3f4a19d41cb6cf7db7c264ef95deee509db816dabe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bioinformatics</topic><topic>Energy measurement</topic><topic>Face recognition</topic><topic>Focusing</topic><topic>Histograms</topic><topic>Kernel</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Support vector machines</topic><topic>Telecommunications</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahbi, H.</creatorcontrib><creatorcontrib>Audibert, J.-Y.</creatorcontrib><creatorcontrib>Rabarisoa, J.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahbi, H.</au><au>Audibert, J.-Y.</au><au>Rabarisoa, J.</au><au>Keriven, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Context-dependent kernel design for object matching and recognition</atitle><btitle>2008 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><eisbn>9781424422432</eisbn><eisbn>1424422434</eisbn><abstract>The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2008.4587607</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8
issn 1063-6919
language eng
recordid cdi_ieee_primary_4587607
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Energy measurement
Face recognition
Focusing
Histograms
Kernel
Object recognition
Pattern recognition
Support vector machines
Telecommunications
title Context-dependent kernel design for object matching and recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Context-dependent%20kernel%20design%20for%20object%20matching%20and%20recognition&rft.btitle=2008%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Sahbi,%20H.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424422425&rft.isbn_list=1424422426&rft_id=info:doi/10.1109/CVPR.2008.4587607&rft_dat=%3Cieee_6IE%3E4587607%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422432&rft.eisbn_list=1424422434&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4587607&rfr_iscdi=true