Structure learning in random fields for heart motion abnormality detection

Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmidt, M., Murphy, K., Fung, G., Rosales, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Schmidt, M.
Murphy, K.
Fung, G.
Rosales, R.
description Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.
doi_str_mv 10.1109/CVPR.2008.4587367
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4587367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4587367</ieee_id><sourcerecordid>4587367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c138t-105babb55625f2fd144d714835d449f7bfbb3f4f0193bcb0c481c3fd3842b4303</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMqWOo8gLjJC0zNzb2ZySylqFUKin_bkkwSjcyPZNJF396K3Xg2h_MdOIvD2AWIBYBorpbvT88LKYRekNI1VvURK5paA0kiKQnl8b8s1QmbgaiwrBpozlgxTV9iL1JYQTVjDy85bdu8TZ533qQhDh88DjyZwY09D9F3buJhTPxz32bejzmOAzd2GFNvuph33Pns2196zk6D6SZfHHzO3m5vXpercv14d7-8XpctoM4lCGWNtUpVUgUZHBC5GkijckRNqG2wFgMFAQ3a1oqWNLQYHGqSllDgnF3-7Ubv_eY7xd6k3ebwBv4Am2dRLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structure learning in random fields for heart motion abnormality detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schmidt, M. ; Murphy, K. ; Fung, G. ; Rosales, R.</creator><creatorcontrib>Schmidt, M. ; Murphy, K. ; Fung, G. ; Rosales, R.</creatorcontrib><description>Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424422425</identifier><identifier>ISBN: 1424422426</identifier><identifier>EISBN: 9781424422432</identifier><identifier>EISBN: 1424422434</identifier><identifier>DOI: 10.1109/CVPR.2008.4587367</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Cardiac disease ; Computer science ; Coronary arteriosclerosis ; Heart ; Image segmentation ; Medical diagnostic imaging ; Motion detection ; Muscles ; Ultrasonic imaging</subject><ispartof>2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c138t-105babb55625f2fd144d714835d449f7bfbb3f4f0193bcb0c481c3fd3842b4303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4587367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4587367$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Murphy, K.</creatorcontrib><creatorcontrib>Fung, G.</creatorcontrib><creatorcontrib>Rosales, R.</creatorcontrib><title>Structure learning in random fields for heart motion abnormality detection</title><title>2008 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.</description><subject>Biomedical imaging</subject><subject>Cardiac disease</subject><subject>Computer science</subject><subject>Coronary arteriosclerosis</subject><subject>Heart</subject><subject>Image segmentation</subject><subject>Medical diagnostic imaging</subject><subject>Motion detection</subject><subject>Muscles</subject><subject>Ultrasonic imaging</subject><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><isbn>9781424422432</isbn><isbn>1424422434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMqWOo8gLjJC0zNzb2ZySylqFUKin_bkkwSjcyPZNJF396K3Xg2h_MdOIvD2AWIBYBorpbvT88LKYRekNI1VvURK5paA0kiKQnl8b8s1QmbgaiwrBpozlgxTV9iL1JYQTVjDy85bdu8TZ533qQhDh88DjyZwY09D9F3buJhTPxz32bejzmOAzd2GFNvuph33Pns2196zk6D6SZfHHzO3m5vXpercv14d7-8XpctoM4lCGWNtUpVUgUZHBC5GkijckRNqG2wFgMFAQ3a1oqWNLQYHGqSllDgnF3-7Ubv_eY7xd6k3ebwBv4Am2dRLw</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Schmidt, M.</creator><creator>Murphy, K.</creator><creator>Fung, G.</creator><creator>Rosales, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>Structure learning in random fields for heart motion abnormality detection</title><author>Schmidt, M. ; Murphy, K. ; Fung, G. ; Rosales, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c138t-105babb55625f2fd144d714835d449f7bfbb3f4f0193bcb0c481c3fd3842b4303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Cardiac disease</topic><topic>Computer science</topic><topic>Coronary arteriosclerosis</topic><topic>Heart</topic><topic>Image segmentation</topic><topic>Medical diagnostic imaging</topic><topic>Motion detection</topic><topic>Muscles</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Murphy, K.</creatorcontrib><creatorcontrib>Fung, G.</creatorcontrib><creatorcontrib>Rosales, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmidt, M.</au><au>Murphy, K.</au><au>Fung, G.</au><au>Rosales, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structure learning in random fields for heart motion abnormality detection</atitle><btitle>2008 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><eisbn>9781424422432</eisbn><eisbn>1424422434</eisbn><abstract>Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2008.4587367</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8
issn 1063-6919
language eng
recordid cdi_ieee_primary_4587367
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Cardiac disease
Computer science
Coronary arteriosclerosis
Heart
Image segmentation
Medical diagnostic imaging
Motion detection
Muscles
Ultrasonic imaging
title Structure learning in random fields for heart motion abnormality detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structure%20learning%20in%20random%20fields%20for%20heart%20motion%20abnormality%20detection&rft.btitle=2008%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Schmidt,%20M.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424422425&rft.isbn_list=1424422426&rft_id=info:doi/10.1109/CVPR.2008.4587367&rft_dat=%3Cieee_6IE%3E4587367%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422432&rft.eisbn_list=1424422434&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4587367&rfr_iscdi=true