Structure learning in random fields for heart motion abnormality detection
Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this pr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Schmidt, M. Murphy, K. Fung, G. Rosales, R. |
description | Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital. |
doi_str_mv | 10.1109/CVPR.2008.4587367 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4587367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4587367</ieee_id><sourcerecordid>4587367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c138t-105babb55625f2fd144d714835d449f7bfbb3f4f0193bcb0c481c3fd3842b4303</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMqWOo8gLjJC0zNzb2ZySylqFUKin_bkkwSjcyPZNJF396K3Xg2h_MdOIvD2AWIBYBorpbvT88LKYRekNI1VvURK5paA0kiKQnl8b8s1QmbgaiwrBpozlgxTV9iL1JYQTVjDy85bdu8TZ533qQhDh88DjyZwY09D9F3buJhTPxz32bejzmOAzd2GFNvuph33Pns2196zk6D6SZfHHzO3m5vXpercv14d7-8XpctoM4lCGWNtUpVUgUZHBC5GkijckRNqG2wFgMFAQ3a1oqWNLQYHGqSllDgnF3-7Ubv_eY7xd6k3ebwBv4Am2dRLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structure learning in random fields for heart motion abnormality detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schmidt, M. ; Murphy, K. ; Fung, G. ; Rosales, R.</creator><creatorcontrib>Schmidt, M. ; Murphy, K. ; Fung, G. ; Rosales, R.</creatorcontrib><description>Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424422425</identifier><identifier>ISBN: 1424422426</identifier><identifier>EISBN: 9781424422432</identifier><identifier>EISBN: 1424422434</identifier><identifier>DOI: 10.1109/CVPR.2008.4587367</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Cardiac disease ; Computer science ; Coronary arteriosclerosis ; Heart ; Image segmentation ; Medical diagnostic imaging ; Motion detection ; Muscles ; Ultrasonic imaging</subject><ispartof>2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c138t-105babb55625f2fd144d714835d449f7bfbb3f4f0193bcb0c481c3fd3842b4303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4587367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4587367$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Murphy, K.</creatorcontrib><creatorcontrib>Fung, G.</creatorcontrib><creatorcontrib>Rosales, R.</creatorcontrib><title>Structure learning in random fields for heart motion abnormality detection</title><title>2008 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.</description><subject>Biomedical imaging</subject><subject>Cardiac disease</subject><subject>Computer science</subject><subject>Coronary arteriosclerosis</subject><subject>Heart</subject><subject>Image segmentation</subject><subject>Medical diagnostic imaging</subject><subject>Motion detection</subject><subject>Muscles</subject><subject>Ultrasonic imaging</subject><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><isbn>9781424422432</isbn><isbn>1424422434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMqWOo8gLjJC0zNzb2ZySylqFUKin_bkkwSjcyPZNJF396K3Xg2h_MdOIvD2AWIBYBorpbvT88LKYRekNI1VvURK5paA0kiKQnl8b8s1QmbgaiwrBpozlgxTV9iL1JYQTVjDy85bdu8TZ533qQhDh88DjyZwY09D9F3buJhTPxz32bejzmOAzd2GFNvuph33Pns2196zk6D6SZfHHzO3m5vXpercv14d7-8XpctoM4lCGWNtUpVUgUZHBC5GkijckRNqG2wFgMFAQ3a1oqWNLQYHGqSllDgnF3-7Ubv_eY7xd6k3ebwBv4Am2dRLw</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Schmidt, M.</creator><creator>Murphy, K.</creator><creator>Fung, G.</creator><creator>Rosales, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>Structure learning in random fields for heart motion abnormality detection</title><author>Schmidt, M. ; Murphy, K. ; Fung, G. ; Rosales, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c138t-105babb55625f2fd144d714835d449f7bfbb3f4f0193bcb0c481c3fd3842b4303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Cardiac disease</topic><topic>Computer science</topic><topic>Coronary arteriosclerosis</topic><topic>Heart</topic><topic>Image segmentation</topic><topic>Medical diagnostic imaging</topic><topic>Motion detection</topic><topic>Muscles</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Murphy, K.</creatorcontrib><creatorcontrib>Fung, G.</creatorcontrib><creatorcontrib>Rosales, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmidt, M.</au><au>Murphy, K.</au><au>Fung, G.</au><au>Rosales, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structure learning in random fields for heart motion abnormality detection</atitle><btitle>2008 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><eisbn>9781424422432</eisbn><eisbn>1424422434</eisbn><abstract>Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2008.4587367</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_4587367 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Cardiac disease Computer science Coronary arteriosclerosis Heart Image segmentation Medical diagnostic imaging Motion detection Muscles Ultrasonic imaging |
title | Structure learning in random fields for heart motion abnormality detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structure%20learning%20in%20random%20fields%20for%20heart%20motion%20abnormality%20detection&rft.btitle=2008%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Schmidt,%20M.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424422425&rft.isbn_list=1424422426&rft_id=info:doi/10.1109/CVPR.2008.4587367&rft_dat=%3Cieee_6IE%3E4587367%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422432&rft.eisbn_list=1424422434&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4587367&rfr_iscdi=true |