Nanostructure control of carbon aerogels and the application in lithium ion cells

Carbon aerogels are derived via a sol-gel process with resorcinol and formodehyde and subsequent pyrolysis of the precursor (RF) aerogels. Due to their high surface area, electrically conducting network and chemical inertness, carbon aerogels can be considered ideal electrodes in rechargeable batter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shen Jun, Han Weina, Mi Yijie, On Yangling, Wu Guangming, Zhou Bin, Zhang Zhihua, Ni Xingyuan, Niu Xixian, Wang Guoqing, Wang Peiqing, Wang Qingfeng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon aerogels are derived via a sol-gel process with resorcinol and formodehyde and subsequent pyrolysis of the precursor (RF) aerogels. Due to their high surface area, electrically conducting network and chemical inertness, carbon aerogels can be considered ideal electrodes in rechargeable batteries. In this paper the optimization of the preparation and structure controlling of carbon aerogels are studied. The influence of preparation conditions on the structural properties of carbon aerogels are investigated by scanning electron microscopy, nitrogen adsorption and X-ray diffraction measurements. Carbon electrodes are prepared using carbon aerogels powders and binder, with the carbon aerogel electrode as the anode and with lithium metal foil as the cathode, cells are made. Electrochemical measurements of the lithium intercalation properties for carbon aerogels are performed under high-purity argon in a glove box. The model cells show that the capacity for the first cycle and the rechargeable capacity are all very high, but the ratio of the rechargeable capacity to the total capacity (first cycle) is about 0.3 to 0.4.
ISSN:2159-3523
DOI:10.1109/INEC.2008.4585440