An empirical study of supervised learning for biological sequence profiling and microarray expression data analysis

Recent years have seen increasing quantities of high-throughput biological data available for genetic disease profiling, protein structure and function prediction, and new drug and therapy discovery. High-throughput biological experiments output high volume and/or high dimensional data, which impose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kamal, Abu H. M., Xingquan Zhu, Pandya, Abhijit S., Sam Hsu, Yong Shi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 70
container_title
container_volume
creator Kamal, Abu H. M.
Xingquan Zhu
Pandya, Abhijit S.
Sam Hsu
Yong Shi
description Recent years have seen increasing quantities of high-throughput biological data available for genetic disease profiling, protein structure and function prediction, and new drug and therapy discovery. High-throughput biological experiments output high volume and/or high dimensional data, which impose significant challenges for molecular biologists and domain experts to properly and rapidly digest and interpret the data. In this paper, we provide simple background knowledge for computer scientists to understand how supervised learning tools can be used to solve biological challenges, with a primary focus on two types of problems: Biological sequence profiling and microarray expression data analysis. We employ a set of supervised learning methods to analyze four types of biological data: (1) gene promoter site prediction; (2) splice junction prediction; (3) protein structure prediction; and (4) gene expression data analysis. We argue that although existing studies favor one or two learning methods (such as Support Vector Machines), such conclusions might have been biased, mainly because of the inadequacy of the measures employed in their study. A line of learning algorithms should be considered in different scenarios, depending on the objective and the requirement of the applications, such as the system running time or the prediction accuracy on the minority class examples.
doi_str_mv 10.1109/IRI.2008.4583007
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4583007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4583007</ieee_id><sourcerecordid>4583007</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-37f1e0d2587e72e163c37400756afe14c8bba8e451f6f530055512a41a5fe4e43</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhlekoNbcBS_7B1r3a7LJsRS1hYIgei7TZLasJNm424r596a0B-fyMrwPA_Mw9iDFXEpRPq3f13MlRDE3UGgh7BXLSltIo4xReS7s9f8dSjlhdye8FKCVuGFZSl9iHAMarL5ladFxansffYUNT4djPfDgeDr2FH98opo3hLHz3Z67EPnOhybszyx9H6mriPcxON-cCOxq3voqBowRB06_faSUfOh4jQcca2yG5NM9mzhsEmWXnLLPl-eP5Wq2eXtdLxebmZcWDjNtnSRRKygsWUUy15W2ZnwZcnQkTVXsdliQAelyB6MLAJAKjURwZMjoKXs83_VEtO2jbzEO24s3_QcBP2BM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An empirical study of supervised learning for biological sequence profiling and microarray expression data analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kamal, Abu H. M. ; Xingquan Zhu ; Pandya, Abhijit S. ; Sam Hsu ; Yong Shi</creator><creatorcontrib>Kamal, Abu H. M. ; Xingquan Zhu ; Pandya, Abhijit S. ; Sam Hsu ; Yong Shi</creatorcontrib><description>Recent years have seen increasing quantities of high-throughput biological data available for genetic disease profiling, protein structure and function prediction, and new drug and therapy discovery. High-throughput biological experiments output high volume and/or high dimensional data, which impose significant challenges for molecular biologists and domain experts to properly and rapidly digest and interpret the data. In this paper, we provide simple background knowledge for computer scientists to understand how supervised learning tools can be used to solve biological challenges, with a primary focus on two types of problems: Biological sequence profiling and microarray expression data analysis. We employ a set of supervised learning methods to analyze four types of biological data: (1) gene promoter site prediction; (2) splice junction prediction; (3) protein structure prediction; and (4) gene expression data analysis. We argue that although existing studies favor one or two learning methods (such as Support Vector Machines), such conclusions might have been biased, mainly because of the inadequacy of the measures employed in their study. A line of learning algorithms should be considered in different scenarios, depending on the objective and the requirement of the applications, such as the system running time or the prediction accuracy on the minority class examples.</description><identifier>ISBN: 9781424426591</identifier><identifier>ISBN: 1424426596</identifier><identifier>EISBN: 9781424426607</identifier><identifier>EISBN: 142442660X</identifier><identifier>DOI: 10.1109/IRI.2008.4583007</identifier><identifier>LCCN: 2008905320</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Biology ; DNA ; Junctions ; Proteins ; Supervised learning ; Support vector machines</subject><ispartof>2008 IEEE International Conference on Information Reuse and Integration, 2008, p.70-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4583007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4583007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamal, Abu H. M.</creatorcontrib><creatorcontrib>Xingquan Zhu</creatorcontrib><creatorcontrib>Pandya, Abhijit S.</creatorcontrib><creatorcontrib>Sam Hsu</creatorcontrib><creatorcontrib>Yong Shi</creatorcontrib><title>An empirical study of supervised learning for biological sequence profiling and microarray expression data analysis</title><title>2008 IEEE International Conference on Information Reuse and Integration</title><addtitle>IRI</addtitle><description>Recent years have seen increasing quantities of high-throughput biological data available for genetic disease profiling, protein structure and function prediction, and new drug and therapy discovery. High-throughput biological experiments output high volume and/or high dimensional data, which impose significant challenges for molecular biologists and domain experts to properly and rapidly digest and interpret the data. In this paper, we provide simple background knowledge for computer scientists to understand how supervised learning tools can be used to solve biological challenges, with a primary focus on two types of problems: Biological sequence profiling and microarray expression data analysis. We employ a set of supervised learning methods to analyze four types of biological data: (1) gene promoter site prediction; (2) splice junction prediction; (3) protein structure prediction; and (4) gene expression data analysis. We argue that although existing studies favor one or two learning methods (such as Support Vector Machines), such conclusions might have been biased, mainly because of the inadequacy of the measures employed in their study. A line of learning algorithms should be considered in different scenarios, depending on the objective and the requirement of the applications, such as the system running time or the prediction accuracy on the minority class examples.</description><subject>Accuracy</subject><subject>Biology</subject><subject>DNA</subject><subject>Junctions</subject><subject>Proteins</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><isbn>9781424426591</isbn><isbn>1424426596</isbn><isbn>9781424426607</isbn><isbn>142442660X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhlekoNbcBS_7B1r3a7LJsRS1hYIgei7TZLasJNm424r596a0B-fyMrwPA_Mw9iDFXEpRPq3f13MlRDE3UGgh7BXLSltIo4xReS7s9f8dSjlhdye8FKCVuGFZSl9iHAMarL5ladFxansffYUNT4djPfDgeDr2FH98opo3hLHz3Z67EPnOhybszyx9H6mriPcxON-cCOxq3voqBowRB06_faSUfOh4jQcca2yG5NM9mzhsEmWXnLLPl-eP5Wq2eXtdLxebmZcWDjNtnSRRKygsWUUy15W2ZnwZcnQkTVXsdliQAelyB6MLAJAKjURwZMjoKXs83_VEtO2jbzEO24s3_QcBP2BM</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Kamal, Abu H. M.</creator><creator>Xingquan Zhu</creator><creator>Pandya, Abhijit S.</creator><creator>Sam Hsu</creator><creator>Yong Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>An empirical study of supervised learning for biological sequence profiling and microarray expression data analysis</title><author>Kamal, Abu H. M. ; Xingquan Zhu ; Pandya, Abhijit S. ; Sam Hsu ; Yong Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-37f1e0d2587e72e163c37400756afe14c8bba8e451f6f530055512a41a5fe4e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Biology</topic><topic>DNA</topic><topic>Junctions</topic><topic>Proteins</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamal, Abu H. M.</creatorcontrib><creatorcontrib>Xingquan Zhu</creatorcontrib><creatorcontrib>Pandya, Abhijit S.</creatorcontrib><creatorcontrib>Sam Hsu</creatorcontrib><creatorcontrib>Yong Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamal, Abu H. M.</au><au>Xingquan Zhu</au><au>Pandya, Abhijit S.</au><au>Sam Hsu</au><au>Yong Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An empirical study of supervised learning for biological sequence profiling and microarray expression data analysis</atitle><btitle>2008 IEEE International Conference on Information Reuse and Integration</btitle><stitle>IRI</stitle><date>2008-07</date><risdate>2008</risdate><spage>70</spage><epage>75</epage><pages>70-75</pages><isbn>9781424426591</isbn><isbn>1424426596</isbn><eisbn>9781424426607</eisbn><eisbn>142442660X</eisbn><abstract>Recent years have seen increasing quantities of high-throughput biological data available for genetic disease profiling, protein structure and function prediction, and new drug and therapy discovery. High-throughput biological experiments output high volume and/or high dimensional data, which impose significant challenges for molecular biologists and domain experts to properly and rapidly digest and interpret the data. In this paper, we provide simple background knowledge for computer scientists to understand how supervised learning tools can be used to solve biological challenges, with a primary focus on two types of problems: Biological sequence profiling and microarray expression data analysis. We employ a set of supervised learning methods to analyze four types of biological data: (1) gene promoter site prediction; (2) splice junction prediction; (3) protein structure prediction; and (4) gene expression data analysis. We argue that although existing studies favor one or two learning methods (such as Support Vector Machines), such conclusions might have been biased, mainly because of the inadequacy of the measures employed in their study. A line of learning algorithms should be considered in different scenarios, depending on the objective and the requirement of the applications, such as the system running time or the prediction accuracy on the minority class examples.</abstract><pub>IEEE</pub><doi>10.1109/IRI.2008.4583007</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424426591
ispartof 2008 IEEE International Conference on Information Reuse and Integration, 2008, p.70-75
issn
language eng
recordid cdi_ieee_primary_4583007
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Biology
DNA
Junctions
Proteins
Supervised learning
Support vector machines
title An empirical study of supervised learning for biological sequence profiling and microarray expression data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20empirical%20study%20of%20supervised%20learning%20for%20biological%20sequence%20profiling%20and%20microarray%20expression%20data%20analysis&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Information%20Reuse%20and%20Integration&rft.au=Kamal,%20Abu%20H.%20M.&rft.date=2008-07&rft.spage=70&rft.epage=75&rft.pages=70-75&rft.isbn=9781424426591&rft.isbn_list=1424426596&rft_id=info:doi/10.1109/IRI.2008.4583007&rft_dat=%3Cieee_6IE%3E4583007%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426607&rft.eisbn_list=142442660X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4583007&rfr_iscdi=true