An approach to the EOG signal segmentation based on fuzzy reasoning
In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a le...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 713 |
---|---|
container_issue | |
container_start_page | 710 |
container_title | |
container_volume | |
creator | Przybyla, T. Pander, T. Czabanski, R. |
description | In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training. |
doi_str_mv | 10.1109/HSI.2008.4581528 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4581528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4581528</ieee_id><sourcerecordid>4581528</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d13c9f06d7df3a8de10d49a68402d35b479d802312455e2d3c42d9762d8e9f593</originalsourceid><addsrcrecordid>eNo1kL1uwjAUhV21SAWavVIXv0DS62s7sUcUUUBCYihDN2RiJ7gCJ4rTAZ6-kUqn8yOdbziEvDLIGAP9vv7cZAigMiEVk6geSKILxQQKwaTg4pHM_gN-PZEpMqlSRJFPyGzcFRrkyHkmSYzfAMCZUhrZlJSLQE3X9a2pTnRo6XBydLlb0eibYM40uubiwmAG3wZ6NNFZOpr653a70t6Z2AYfmhcyqc05uuSuc7L_WO7LdbrdrTblYpt6DUNqGa90DbktbM2Nso6BFdrkSgBaLo-i0FYBcoZCSjdWlUCrixytcrqWms_J2x_WO-cOXe8vpr8e7n_wX1UxTgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An approach to the EOG signal segmentation based on fuzzy reasoning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Przybyla, T. ; Pander, T. ; Czabanski, R.</creator><creatorcontrib>Przybyla, T. ; Pander, T. ; Czabanski, R.</creatorcontrib><description>In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.</description><identifier>ISSN: 2158-2246</identifier><identifier>ISBN: 142441542X</identifier><identifier>ISBN: 9781424415427</identifier><identifier>EISBN: 9781424415434</identifier><identifier>EISBN: 1424415438</identifier><identifier>DOI: 10.1109/HSI.2008.4581528</identifier><identifier>LCCN: 2007905110</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering methods ; Electric potential ; Electrooculography ; EOG signal ; Estimation ; fuzzy clustering ; fuzzy reasoning ; Object segmentation ; Prototypes ; signal segmentation</subject><ispartof>2008 Conference on Human System Interactions, 2008, p.710-713</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4581528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4581528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Przybyla, T.</creatorcontrib><creatorcontrib>Pander, T.</creatorcontrib><creatorcontrib>Czabanski, R.</creatorcontrib><title>An approach to the EOG signal segmentation based on fuzzy reasoning</title><title>2008 Conference on Human System Interactions</title><addtitle>HSI</addtitle><description>In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.</description><subject>Artificial neural networks</subject><subject>Clustering methods</subject><subject>Electric potential</subject><subject>Electrooculography</subject><subject>EOG signal</subject><subject>Estimation</subject><subject>fuzzy clustering</subject><subject>fuzzy reasoning</subject><subject>Object segmentation</subject><subject>Prototypes</subject><subject>signal segmentation</subject><issn>2158-2246</issn><isbn>142441542X</isbn><isbn>9781424415427</isbn><isbn>9781424415434</isbn><isbn>1424415438</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kL1uwjAUhV21SAWavVIXv0DS62s7sUcUUUBCYihDN2RiJ7gCJ4rTAZ6-kUqn8yOdbziEvDLIGAP9vv7cZAigMiEVk6geSKILxQQKwaTg4pHM_gN-PZEpMqlSRJFPyGzcFRrkyHkmSYzfAMCZUhrZlJSLQE3X9a2pTnRo6XBydLlb0eibYM40uubiwmAG3wZ6NNFZOpr653a70t6Z2AYfmhcyqc05uuSuc7L_WO7LdbrdrTblYpt6DUNqGa90DbktbM2Nso6BFdrkSgBaLo-i0FYBcoZCSjdWlUCrixytcrqWms_J2x_WO-cOXe8vpr8e7n_wX1UxTgQ</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Przybyla, T.</creator><creator>Pander, T.</creator><creator>Czabanski, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>An approach to the EOG signal segmentation based on fuzzy reasoning</title><author>Przybyla, T. ; Pander, T. ; Czabanski, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d13c9f06d7df3a8de10d49a68402d35b479d802312455e2d3c42d9762d8e9f593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Clustering methods</topic><topic>Electric potential</topic><topic>Electrooculography</topic><topic>EOG signal</topic><topic>Estimation</topic><topic>fuzzy clustering</topic><topic>fuzzy reasoning</topic><topic>Object segmentation</topic><topic>Prototypes</topic><topic>signal segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Przybyla, T.</creatorcontrib><creatorcontrib>Pander, T.</creatorcontrib><creatorcontrib>Czabanski, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Przybyla, T.</au><au>Pander, T.</au><au>Czabanski, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An approach to the EOG signal segmentation based on fuzzy reasoning</atitle><btitle>2008 Conference on Human System Interactions</btitle><stitle>HSI</stitle><date>2008-05</date><risdate>2008</risdate><spage>710</spage><epage>713</epage><pages>710-713</pages><issn>2158-2246</issn><isbn>142441542X</isbn><isbn>9781424415427</isbn><eisbn>9781424415434</eisbn><eisbn>1424415438</eisbn><abstract>In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.</abstract><pub>IEEE</pub><doi>10.1109/HSI.2008.4581528</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-2246 |
ispartof | 2008 Conference on Human System Interactions, 2008, p.710-713 |
issn | 2158-2246 |
language | eng |
recordid | cdi_ieee_primary_4581528 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Clustering methods Electric potential Electrooculography EOG signal Estimation fuzzy clustering fuzzy reasoning Object segmentation Prototypes signal segmentation |
title | An approach to the EOG signal segmentation based on fuzzy reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20approach%20to%20the%20EOG%20signal%20segmentation%20based%20on%20fuzzy%20reasoning&rft.btitle=2008%20Conference%20on%20Human%20System%20Interactions&rft.au=Przybyla,%20T.&rft.date=2008-05&rft.spage=710&rft.epage=713&rft.pages=710-713&rft.issn=2158-2246&rft.isbn=142441542X&rft.isbn_list=9781424415427&rft_id=info:doi/10.1109/HSI.2008.4581528&rft_dat=%3Cieee_6IE%3E4581528%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424415434&rft.eisbn_list=1424415438&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4581528&rfr_iscdi=true |