An approach to the EOG signal segmentation based on fuzzy reasoning

In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Przybyla, T., Pander, T., Czabanski, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue
container_start_page 710
container_title
container_volume
creator Przybyla, T.
Pander, T.
Czabanski, R.
description In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.
doi_str_mv 10.1109/HSI.2008.4581528
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4581528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4581528</ieee_id><sourcerecordid>4581528</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d13c9f06d7df3a8de10d49a68402d35b479d802312455e2d3c42d9762d8e9f593</originalsourceid><addsrcrecordid>eNo1kL1uwjAUhV21SAWavVIXv0DS62s7sUcUUUBCYihDN2RiJ7gCJ4rTAZ6-kUqn8yOdbziEvDLIGAP9vv7cZAigMiEVk6geSKILxQQKwaTg4pHM_gN-PZEpMqlSRJFPyGzcFRrkyHkmSYzfAMCZUhrZlJSLQE3X9a2pTnRo6XBydLlb0eibYM40uubiwmAG3wZ6NNFZOpr653a70t6Z2AYfmhcyqc05uuSuc7L_WO7LdbrdrTblYpt6DUNqGa90DbktbM2Nso6BFdrkSgBaLo-i0FYBcoZCSjdWlUCrixytcrqWms_J2x_WO-cOXe8vpr8e7n_wX1UxTgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An approach to the EOG signal segmentation based on fuzzy reasoning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Przybyla, T. ; Pander, T. ; Czabanski, R.</creator><creatorcontrib>Przybyla, T. ; Pander, T. ; Czabanski, R.</creatorcontrib><description>In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.</description><identifier>ISSN: 2158-2246</identifier><identifier>ISBN: 142441542X</identifier><identifier>ISBN: 9781424415427</identifier><identifier>EISBN: 9781424415434</identifier><identifier>EISBN: 1424415438</identifier><identifier>DOI: 10.1109/HSI.2008.4581528</identifier><identifier>LCCN: 2007905110</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering methods ; Electric potential ; Electrooculography ; EOG signal ; Estimation ; fuzzy clustering ; fuzzy reasoning ; Object segmentation ; Prototypes ; signal segmentation</subject><ispartof>2008 Conference on Human System Interactions, 2008, p.710-713</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4581528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4581528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Przybyla, T.</creatorcontrib><creatorcontrib>Pander, T.</creatorcontrib><creatorcontrib>Czabanski, R.</creatorcontrib><title>An approach to the EOG signal segmentation based on fuzzy reasoning</title><title>2008 Conference on Human System Interactions</title><addtitle>HSI</addtitle><description>In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.</description><subject>Artificial neural networks</subject><subject>Clustering methods</subject><subject>Electric potential</subject><subject>Electrooculography</subject><subject>EOG signal</subject><subject>Estimation</subject><subject>fuzzy clustering</subject><subject>fuzzy reasoning</subject><subject>Object segmentation</subject><subject>Prototypes</subject><subject>signal segmentation</subject><issn>2158-2246</issn><isbn>142441542X</isbn><isbn>9781424415427</isbn><isbn>9781424415434</isbn><isbn>1424415438</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kL1uwjAUhV21SAWavVIXv0DS62s7sUcUUUBCYihDN2RiJ7gCJ4rTAZ6-kUqn8yOdbziEvDLIGAP9vv7cZAigMiEVk6geSKILxQQKwaTg4pHM_gN-PZEpMqlSRJFPyGzcFRrkyHkmSYzfAMCZUhrZlJSLQE3X9a2pTnRo6XBydLlb0eibYM40uubiwmAG3wZ6NNFZOpr653a70t6Z2AYfmhcyqc05uuSuc7L_WO7LdbrdrTblYpt6DUNqGa90DbktbM2Nso6BFdrkSgBaLo-i0FYBcoZCSjdWlUCrixytcrqWms_J2x_WO-cOXe8vpr8e7n_wX1UxTgQ</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Przybyla, T.</creator><creator>Pander, T.</creator><creator>Czabanski, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>An approach to the EOG signal segmentation based on fuzzy reasoning</title><author>Przybyla, T. ; Pander, T. ; Czabanski, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d13c9f06d7df3a8de10d49a68402d35b479d802312455e2d3c42d9762d8e9f593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Clustering methods</topic><topic>Electric potential</topic><topic>Electrooculography</topic><topic>EOG signal</topic><topic>Estimation</topic><topic>fuzzy clustering</topic><topic>fuzzy reasoning</topic><topic>Object segmentation</topic><topic>Prototypes</topic><topic>signal segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Przybyla, T.</creatorcontrib><creatorcontrib>Pander, T.</creatorcontrib><creatorcontrib>Czabanski, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Przybyla, T.</au><au>Pander, T.</au><au>Czabanski, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An approach to the EOG signal segmentation based on fuzzy reasoning</atitle><btitle>2008 Conference on Human System Interactions</btitle><stitle>HSI</stitle><date>2008-05</date><risdate>2008</risdate><spage>710</spage><epage>713</epage><pages>710-713</pages><issn>2158-2246</issn><isbn>142441542X</isbn><isbn>9781424415427</isbn><eisbn>9781424415434</eisbn><eisbn>1424415438</eisbn><abstract>In this paper we presented an approach to segmentation of an electrooculography (EOG) signal. For segmentation we have used the elements of the fuzzy set theory. Results obtained in our numerical experiments show usefulness of proposed approach. Our method can be also used for the generating of a learning set necessary for the neural networks or the fuzzy-neural systems training.</abstract><pub>IEEE</pub><doi>10.1109/HSI.2008.4581528</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-2246
ispartof 2008 Conference on Human System Interactions, 2008, p.710-713
issn 2158-2246
language eng
recordid cdi_ieee_primary_4581528
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Clustering methods
Electric potential
Electrooculography
EOG signal
Estimation
fuzzy clustering
fuzzy reasoning
Object segmentation
Prototypes
signal segmentation
title An approach to the EOG signal segmentation based on fuzzy reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20approach%20to%20the%20EOG%20signal%20segmentation%20based%20on%20fuzzy%20reasoning&rft.btitle=2008%20Conference%20on%20Human%20System%20Interactions&rft.au=Przybyla,%20T.&rft.date=2008-05&rft.spage=710&rft.epage=713&rft.pages=710-713&rft.issn=2158-2246&rft.isbn=142441542X&rft.isbn_list=9781424415427&rft_id=info:doi/10.1109/HSI.2008.4581528&rft_dat=%3Cieee_6IE%3E4581528%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424415434&rft.eisbn_list=1424415438&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4581528&rfr_iscdi=true