Protein secondary structure prediction with high accuracy using Support Vector Machine

Mining bioinformatics data is an emerging area of research. Proteomics is one of the largest areas of focus in bioinformatics and data mining research. Protein structure prediction is one of the most crucial and decisive problem in all the areas of research. Protein secondary structure can be used f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shoyaib, M., Baker, S.M., Jabid, T., Firoz Anwar, Khan, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Shoyaib, M.
Baker, S.M.
Jabid, T.
Firoz Anwar
Khan, H.
description Mining bioinformatics data is an emerging area of research. Proteomics is one of the largest areas of focus in bioinformatics and data mining research. Protein structure prediction is one of the most crucial and decisive problem in all the areas of research. Protein secondary structure can be used for the determination of the tertiary structure via the fold recognition method. Hence, predicting the secondary structures from the proteinpsilas primary sequences has attracted the attention of many researchers. Experimental methods have proved to be complex and expensive. So to develop a simple and accurate method for structure prediction is of great importance. In this paper, a new method has been proposed based on the machine learning technique. The first step of this proposal is to find out frequent patterns of consecutive amino acids in a protein database. After this, a set of frequent words (feature set) is found. Then support vector machine (SVM) is used as a binary/tertiary classifier for the classification of protein secondary structure with these frequent words.
doi_str_mv 10.1109/ICCITECHN.2007.4579365
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4579365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4579365</ieee_id><sourcerecordid>4579365</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d03df07b27c1a9bd77722669f2d2129d910cd4870901a88f51bd9937899bcc603</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxSMy0M19AkHyBVbvTdqm91HKdIP5Bxx7HWmSrhFtS5oi-_ZOHHheDgd-HDiHsTuEBBHofl2W6-2yXL0kAkAlaaZI5tkFm2Iq0hSzDOnyPwBM2PQXJMgQ5RWbD8MHnCQphaK4Zru30EXnWz4407VWhyMfYhhNHIPjfXDWm-i7ln_72PDGHxqujRmDNkc-Dr498Pex77sQ-c6Z2AX-rE3jW3fDJrX-HNz87DO2fVxuy9Vi8_q0Lh82C08QFxakrUFVQhnUVFmllBB5TrWwAgVZQjA2LRQQoC6KOsPKEklVEFXG5CBn7Pav1jvn9n3wX6cB-_Mn8gczlFVG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Protein secondary structure prediction with high accuracy using Support Vector Machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shoyaib, M. ; Baker, S.M. ; Jabid, T. ; Firoz Anwar ; Khan, H.</creator><creatorcontrib>Shoyaib, M. ; Baker, S.M. ; Jabid, T. ; Firoz Anwar ; Khan, H.</creatorcontrib><description>Mining bioinformatics data is an emerging area of research. Proteomics is one of the largest areas of focus in bioinformatics and data mining research. Protein structure prediction is one of the most crucial and decisive problem in all the areas of research. Protein secondary structure can be used for the determination of the tertiary structure via the fold recognition method. Hence, predicting the secondary structures from the proteinpsilas primary sequences has attracted the attention of many researchers. Experimental methods have proved to be complex and expensive. So to develop a simple and accurate method for structure prediction is of great importance. In this paper, a new method has been proposed based on the machine learning technique. The first step of this proposal is to find out frequent patterns of consecutive amino acids in a protein database. After this, a set of frequent words (feature set) is found. Then support vector machine (SVM) is used as a binary/tertiary classifier for the classification of protein secondary structure with these frequent words.</description><identifier>ISBN: 1424415500</identifier><identifier>ISBN: 9781424415502</identifier><identifier>EISBN: 1424415519</identifier><identifier>EISBN: 9781424415519</identifier><identifier>DOI: 10.1109/ICCITECHN.2007.4579365</identifier><identifier>LCCN: 2007905113</identifier><language>eng</language><publisher>IEEE</publisher><subject>amino acid ; Protein ; Secondary Structure ; Support Vector Machine</subject><ispartof>2007 10th international conference on computer and information technology, 2007, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4579365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4579365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shoyaib, M.</creatorcontrib><creatorcontrib>Baker, S.M.</creatorcontrib><creatorcontrib>Jabid, T.</creatorcontrib><creatorcontrib>Firoz Anwar</creatorcontrib><creatorcontrib>Khan, H.</creatorcontrib><title>Protein secondary structure prediction with high accuracy using Support Vector Machine</title><title>2007 10th international conference on computer and information technology</title><addtitle>ICCITECHN</addtitle><description>Mining bioinformatics data is an emerging area of research. Proteomics is one of the largest areas of focus in bioinformatics and data mining research. Protein structure prediction is one of the most crucial and decisive problem in all the areas of research. Protein secondary structure can be used for the determination of the tertiary structure via the fold recognition method. Hence, predicting the secondary structures from the proteinpsilas primary sequences has attracted the attention of many researchers. Experimental methods have proved to be complex and expensive. So to develop a simple and accurate method for structure prediction is of great importance. In this paper, a new method has been proposed based on the machine learning technique. The first step of this proposal is to find out frequent patterns of consecutive amino acids in a protein database. After this, a set of frequent words (feature set) is found. Then support vector machine (SVM) is used as a binary/tertiary classifier for the classification of protein secondary structure with these frequent words.</description><subject>amino acid</subject><subject>Protein</subject><subject>Secondary Structure</subject><subject>Support Vector Machine</subject><isbn>1424415500</isbn><isbn>9781424415502</isbn><isbn>1424415519</isbn><isbn>9781424415519</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkF9LwzAUxSMy0M19AkHyBVbvTdqm91HKdIP5Bxx7HWmSrhFtS5oi-_ZOHHheDgd-HDiHsTuEBBHofl2W6-2yXL0kAkAlaaZI5tkFm2Iq0hSzDOnyPwBM2PQXJMgQ5RWbD8MHnCQphaK4Zru30EXnWz4407VWhyMfYhhNHIPjfXDWm-i7ln_72PDGHxqujRmDNkc-Dr498Pex77sQ-c6Z2AX-rE3jW3fDJrX-HNz87DO2fVxuy9Vi8_q0Lh82C08QFxakrUFVQhnUVFmllBB5TrWwAgVZQjA2LRQQoC6KOsPKEklVEFXG5CBn7Pav1jvn9n3wX6cB-_Mn8gczlFVG</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Shoyaib, M.</creator><creator>Baker, S.M.</creator><creator>Jabid, T.</creator><creator>Firoz Anwar</creator><creator>Khan, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Protein secondary structure prediction with high accuracy using Support Vector Machine</title><author>Shoyaib, M. ; Baker, S.M. ; Jabid, T. ; Firoz Anwar ; Khan, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d03df07b27c1a9bd77722669f2d2129d910cd4870901a88f51bd9937899bcc603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>amino acid</topic><topic>Protein</topic><topic>Secondary Structure</topic><topic>Support Vector Machine</topic><toplevel>online_resources</toplevel><creatorcontrib>Shoyaib, M.</creatorcontrib><creatorcontrib>Baker, S.M.</creatorcontrib><creatorcontrib>Jabid, T.</creatorcontrib><creatorcontrib>Firoz Anwar</creatorcontrib><creatorcontrib>Khan, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shoyaib, M.</au><au>Baker, S.M.</au><au>Jabid, T.</au><au>Firoz Anwar</au><au>Khan, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Protein secondary structure prediction with high accuracy using Support Vector Machine</atitle><btitle>2007 10th international conference on computer and information technology</btitle><stitle>ICCITECHN</stitle><date>2007-12</date><risdate>2007</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1424415500</isbn><isbn>9781424415502</isbn><eisbn>1424415519</eisbn><eisbn>9781424415519</eisbn><abstract>Mining bioinformatics data is an emerging area of research. Proteomics is one of the largest areas of focus in bioinformatics and data mining research. Protein structure prediction is one of the most crucial and decisive problem in all the areas of research. Protein secondary structure can be used for the determination of the tertiary structure via the fold recognition method. Hence, predicting the secondary structures from the proteinpsilas primary sequences has attracted the attention of many researchers. Experimental methods have proved to be complex and expensive. So to develop a simple and accurate method for structure prediction is of great importance. In this paper, a new method has been proposed based on the machine learning technique. The first step of this proposal is to find out frequent patterns of consecutive amino acids in a protein database. After this, a set of frequent words (feature set) is found. Then support vector machine (SVM) is used as a binary/tertiary classifier for the classification of protein secondary structure with these frequent words.</abstract><pub>IEEE</pub><doi>10.1109/ICCITECHN.2007.4579365</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424415500
ispartof 2007 10th international conference on computer and information technology, 2007, p.1-4
issn
language eng
recordid cdi_ieee_primary_4579365
source IEEE Electronic Library (IEL) Conference Proceedings
subjects amino acid
Protein
Secondary Structure
Support Vector Machine
title Protein secondary structure prediction with high accuracy using Support Vector Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Protein%20secondary%20structure%20prediction%20with%20high%20accuracy%20using%20Support%20Vector%20Machine&rft.btitle=2007%2010th%20international%20conference%20on%20computer%20and%20information%20technology&rft.au=Shoyaib,%20M.&rft.date=2007-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1424415500&rft.isbn_list=9781424415502&rft_id=info:doi/10.1109/ICCITECHN.2007.4579365&rft_dat=%3Cieee_6IE%3E4579365%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424415519&rft.eisbn_list=9781424415519&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4579365&rfr_iscdi=true