A Physical Model of High Temperature 4H-SiC MOSFETs
A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2008-08, Vol.55 (8), p.2029-2040 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2040 |
---|---|
container_issue | 8 |
container_start_page | 2029 |
container_title | IEEE transactions on electron devices |
container_volume | 55 |
creator | Potbhare, Siddharth Goldsman, Neil Lelis, Aivars McGarrity, James M. McLean, F. Barry Habersat, Daniel |
description | A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region. |
doi_str_mv | 10.1109/TED.2008.926665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4578879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4578879</ieee_id><sourcerecordid>875050929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</originalsourceid><addsrcrecordid>eNp9kL1PAkEQxTdGExGtLWw2Flod7Oz3lgZRTCCYgPXm2NuTIweHu1zBf--SMxYWNjOZl9-b5D2EboEMAIgZLsfPA0qIHhgqpRRnqAdCqMxILs9RjxDQmWGaXaKrGDfplJzTHmJP-H19jJXLazxrCl_jpsST6nONl3679yE_tMFjPskW1QjP5ouX8TJeo4syr6O_-dl99JHk0SSbzl_fRk_TzHHJDhn3bqWVZlK5siwLtlJCGUOpLyRArplSCtLUmksOQFdUcscEJLFwAghjffTY_d2H5qv18WC3VXS-rvOdb9potRJEEENNIh_-JZkgYEDLBN7_ATdNG3YphdWSCq6lpgkadpALTYzBl3Yfqm0ejhaIPXVtU9f21LXtuk6Ou85Ree9_aS5SOGXYN63wdPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862548682</pqid></control><display><type>article</type><title>A Physical Model of High Temperature 4H-SiC MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Potbhare, Siddharth ; Goldsman, Neil ; Lelis, Aivars ; McGarrity, James M. ; McLean, F. Barry ; Habersat, Daniel</creator><creatorcontrib>Potbhare, Siddharth ; Goldsman, Neil ; Lelis, Aivars ; McGarrity, James M. ; McLean, F. Barry ; Habersat, Daniel</creatorcontrib><description>A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.926665</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Correlation ; Devices ; High-temperature mobility ; high-temperature operation ; interface traps ; Mathematical models ; MOSFET ; MOSFETs ; Photonic band gap ; Rough surfaces ; Saturation ; Scattering ; Semiconductor device modeling ; Silicon carbide ; silicon carbide (SiC) MOSFET ; Surface roughness ; Temperature ; velocity saturation</subject><ispartof>IEEE transactions on electron devices, 2008-08, Vol.55 (8), p.2029-2040</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</citedby><cites>FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4578879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4578879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Potbhare, Siddharth</creatorcontrib><creatorcontrib>Goldsman, Neil</creatorcontrib><creatorcontrib>Lelis, Aivars</creatorcontrib><creatorcontrib>McGarrity, James M.</creatorcontrib><creatorcontrib>McLean, F. Barry</creatorcontrib><creatorcontrib>Habersat, Daniel</creatorcontrib><title>A Physical Model of High Temperature 4H-SiC MOSFETs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.</description><subject>Computer simulation</subject><subject>Correlation</subject><subject>Devices</subject><subject>High-temperature mobility</subject><subject>high-temperature operation</subject><subject>interface traps</subject><subject>Mathematical models</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Photonic band gap</subject><subject>Rough surfaces</subject><subject>Saturation</subject><subject>Scattering</subject><subject>Semiconductor device modeling</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) MOSFET</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>velocity saturation</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kL1PAkEQxTdGExGtLWw2Flod7Oz3lgZRTCCYgPXm2NuTIweHu1zBf--SMxYWNjOZl9-b5D2EboEMAIgZLsfPA0qIHhgqpRRnqAdCqMxILs9RjxDQmWGaXaKrGDfplJzTHmJP-H19jJXLazxrCl_jpsST6nONl3679yE_tMFjPskW1QjP5ouX8TJeo4syr6O_-dl99JHk0SSbzl_fRk_TzHHJDhn3bqWVZlK5siwLtlJCGUOpLyRArplSCtLUmksOQFdUcscEJLFwAghjffTY_d2H5qv18WC3VXS-rvOdb9potRJEEENNIh_-JZkgYEDLBN7_ATdNG3YphdWSCq6lpgkadpALTYzBl3Yfqm0ejhaIPXVtU9f21LXtuk6Ou85Ree9_aS5SOGXYN63wdPQ</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Potbhare, Siddharth</creator><creator>Goldsman, Neil</creator><creator>Lelis, Aivars</creator><creator>McGarrity, James M.</creator><creator>McLean, F. Barry</creator><creator>Habersat, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>A Physical Model of High Temperature 4H-SiC MOSFETs</title><author>Potbhare, Siddharth ; Goldsman, Neil ; Lelis, Aivars ; McGarrity, James M. ; McLean, F. Barry ; Habersat, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer simulation</topic><topic>Correlation</topic><topic>Devices</topic><topic>High-temperature mobility</topic><topic>high-temperature operation</topic><topic>interface traps</topic><topic>Mathematical models</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Photonic band gap</topic><topic>Rough surfaces</topic><topic>Saturation</topic><topic>Scattering</topic><topic>Semiconductor device modeling</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) MOSFET</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>velocity saturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potbhare, Siddharth</creatorcontrib><creatorcontrib>Goldsman, Neil</creatorcontrib><creatorcontrib>Lelis, Aivars</creatorcontrib><creatorcontrib>McGarrity, James M.</creatorcontrib><creatorcontrib>McLean, F. Barry</creatorcontrib><creatorcontrib>Habersat, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Potbhare, Siddharth</au><au>Goldsman, Neil</au><au>Lelis, Aivars</au><au>McGarrity, James M.</au><au>McLean, F. Barry</au><au>Habersat, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physical Model of High Temperature 4H-SiC MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>55</volume><issue>8</issue><spage>2029</spage><epage>2040</epage><pages>2029-2040</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2008.926665</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2008-08, Vol.55 (8), p.2029-2040 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_4578879 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Correlation Devices High-temperature mobility high-temperature operation interface traps Mathematical models MOSFET MOSFETs Photonic band gap Rough surfaces Saturation Scattering Semiconductor device modeling Silicon carbide silicon carbide (SiC) MOSFET Surface roughness Temperature velocity saturation |
title | A Physical Model of High Temperature 4H-SiC MOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physical%20Model%20of%20High%20Temperature%204H-SiC%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Potbhare,%20Siddharth&rft.date=2008-08-01&rft.volume=55&rft.issue=8&rft.spage=2029&rft.epage=2040&rft.pages=2029-2040&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.926665&rft_dat=%3Cproquest_RIE%3E875050929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862548682&rft_id=info:pmid/&rft_ieee_id=4578879&rfr_iscdi=true |