A Physical Model of High Temperature 4H-SiC MOSFETs

A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2008-08, Vol.55 (8), p.2029-2040
Hauptverfasser: Potbhare, Siddharth, Goldsman, Neil, Lelis, Aivars, McGarrity, James M., McLean, F. Barry, Habersat, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2040
container_issue 8
container_start_page 2029
container_title IEEE transactions on electron devices
container_volume 55
creator Potbhare, Siddharth
Goldsman, Neil
Lelis, Aivars
McGarrity, James M.
McLean, F. Barry
Habersat, Daniel
description A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.
doi_str_mv 10.1109/TED.2008.926665
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4578879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4578879</ieee_id><sourcerecordid>875050929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</originalsourceid><addsrcrecordid>eNp9kL1PAkEQxTdGExGtLWw2Flod7Oz3lgZRTCCYgPXm2NuTIweHu1zBf--SMxYWNjOZl9-b5D2EboEMAIgZLsfPA0qIHhgqpRRnqAdCqMxILs9RjxDQmWGaXaKrGDfplJzTHmJP-H19jJXLazxrCl_jpsST6nONl3679yE_tMFjPskW1QjP5ouX8TJeo4syr6O_-dl99JHk0SSbzl_fRk_TzHHJDhn3bqWVZlK5siwLtlJCGUOpLyRArplSCtLUmksOQFdUcscEJLFwAghjffTY_d2H5qv18WC3VXS-rvOdb9potRJEEENNIh_-JZkgYEDLBN7_ATdNG3YphdWSCq6lpgkadpALTYzBl3Yfqm0ejhaIPXVtU9f21LXtuk6Ou85Ree9_aS5SOGXYN63wdPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862548682</pqid></control><display><type>article</type><title>A Physical Model of High Temperature 4H-SiC MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Potbhare, Siddharth ; Goldsman, Neil ; Lelis, Aivars ; McGarrity, James M. ; McLean, F. Barry ; Habersat, Daniel</creator><creatorcontrib>Potbhare, Siddharth ; Goldsman, Neil ; Lelis, Aivars ; McGarrity, James M. ; McLean, F. Barry ; Habersat, Daniel</creatorcontrib><description>A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.926665</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Correlation ; Devices ; High-temperature mobility ; high-temperature operation ; interface traps ; Mathematical models ; MOSFET ; MOSFETs ; Photonic band gap ; Rough surfaces ; Saturation ; Scattering ; Semiconductor device modeling ; Silicon carbide ; silicon carbide (SiC) MOSFET ; Surface roughness ; Temperature ; velocity saturation</subject><ispartof>IEEE transactions on electron devices, 2008-08, Vol.55 (8), p.2029-2040</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</citedby><cites>FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4578879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4578879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Potbhare, Siddharth</creatorcontrib><creatorcontrib>Goldsman, Neil</creatorcontrib><creatorcontrib>Lelis, Aivars</creatorcontrib><creatorcontrib>McGarrity, James M.</creatorcontrib><creatorcontrib>McLean, F. Barry</creatorcontrib><creatorcontrib>Habersat, Daniel</creatorcontrib><title>A Physical Model of High Temperature 4H-SiC MOSFETs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.</description><subject>Computer simulation</subject><subject>Correlation</subject><subject>Devices</subject><subject>High-temperature mobility</subject><subject>high-temperature operation</subject><subject>interface traps</subject><subject>Mathematical models</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Photonic band gap</subject><subject>Rough surfaces</subject><subject>Saturation</subject><subject>Scattering</subject><subject>Semiconductor device modeling</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) MOSFET</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>velocity saturation</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kL1PAkEQxTdGExGtLWw2Flod7Oz3lgZRTCCYgPXm2NuTIweHu1zBf--SMxYWNjOZl9-b5D2EboEMAIgZLsfPA0qIHhgqpRRnqAdCqMxILs9RjxDQmWGaXaKrGDfplJzTHmJP-H19jJXLazxrCl_jpsST6nONl3679yE_tMFjPskW1QjP5ouX8TJeo4syr6O_-dl99JHk0SSbzl_fRk_TzHHJDhn3bqWVZlK5siwLtlJCGUOpLyRArplSCtLUmksOQFdUcscEJLFwAghjffTY_d2H5qv18WC3VXS-rvOdb9potRJEEENNIh_-JZkgYEDLBN7_ATdNG3YphdWSCq6lpgkadpALTYzBl3Yfqm0ejhaIPXVtU9f21LXtuk6Ou85Ree9_aS5SOGXYN63wdPQ</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Potbhare, Siddharth</creator><creator>Goldsman, Neil</creator><creator>Lelis, Aivars</creator><creator>McGarrity, James M.</creator><creator>McLean, F. Barry</creator><creator>Habersat, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>A Physical Model of High Temperature 4H-SiC MOSFETs</title><author>Potbhare, Siddharth ; Goldsman, Neil ; Lelis, Aivars ; McGarrity, James M. ; McLean, F. Barry ; Habersat, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-4ecb878367cfffd3b7579922ed611a83777183788464112b264c351718dc51033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer simulation</topic><topic>Correlation</topic><topic>Devices</topic><topic>High-temperature mobility</topic><topic>high-temperature operation</topic><topic>interface traps</topic><topic>Mathematical models</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Photonic band gap</topic><topic>Rough surfaces</topic><topic>Saturation</topic><topic>Scattering</topic><topic>Semiconductor device modeling</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) MOSFET</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>velocity saturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potbhare, Siddharth</creatorcontrib><creatorcontrib>Goldsman, Neil</creatorcontrib><creatorcontrib>Lelis, Aivars</creatorcontrib><creatorcontrib>McGarrity, James M.</creatorcontrib><creatorcontrib>McLean, F. Barry</creatorcontrib><creatorcontrib>Habersat, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Potbhare, Siddharth</au><au>Goldsman, Neil</au><au>Lelis, Aivars</au><au>McGarrity, James M.</au><au>McLean, F. Barry</au><au>Habersat, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physical Model of High Temperature 4H-SiC MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>55</volume><issue>8</issue><spage>2029</spage><epage>2040</epage><pages>2029-2040</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A comprehensive physical model for the analysis, characterization, and design of 4H-silicon carbide (SiC) MOSFETs has been developed. The model has been verified for an extensive range of bias conditions and temperatures. It incorporates details of interface trap densities, Coulombic interface trap scattering, surface roughness scattering, phonon scattering, velocity saturation, and their dependences on bias and temperature. The physics-based models were implemented into our device simulator that is tailored for 4H-SiC MOSFET analysis. By using a methodology of numerical modeling, simulation, and close correlation with experimental data, values for various physical parameters governing the operation of 4H-SiC MOSFETs, including the temperature-dependent interface trap density of states, the root-mean-square height and correlation length of the surface roughness, and the electron saturation velocity in the channel and its dependence on temperature, have been extracted. Coulomb scattering and surface roughness scattering limit surface mobility for a wide range of temperatures in the subthreshold and linear regions of device operation, whereas the saturation velocity and the high-field mobility limit current in the saturation region.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2008.926665</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2008-08, Vol.55 (8), p.2029-2040
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_4578879
source IEEE Electronic Library (IEL)
subjects Computer simulation
Correlation
Devices
High-temperature mobility
high-temperature operation
interface traps
Mathematical models
MOSFET
MOSFETs
Photonic band gap
Rough surfaces
Saturation
Scattering
Semiconductor device modeling
Silicon carbide
silicon carbide (SiC) MOSFET
Surface roughness
Temperature
velocity saturation
title A Physical Model of High Temperature 4H-SiC MOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physical%20Model%20of%20High%20Temperature%204H-SiC%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Potbhare,%20Siddharth&rft.date=2008-08-01&rft.volume=55&rft.issue=8&rft.spage=2029&rft.epage=2040&rft.pages=2029-2040&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.926665&rft_dat=%3Cproquest_RIE%3E875050929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862548682&rft_id=info:pmid/&rft_ieee_id=4578879&rfr_iscdi=true