A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems

The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jalali, M., Mustapha, N., Sulaiman, N.B., Mamat, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue
container_start_page 302
container_title
container_volume
creator Jalali, M.
Mustapha, N.
Sulaiman, N.B.
Mamat, A.
description The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.
doi_str_mv 10.1109/IV.2008.40
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4577963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4577963</ieee_id><sourcerecordid>4577963</sourcerecordid><originalsourceid>FETCH-LOGICAL-g266t-e296994ab46f8572a31b36efe2a86cb70cf80e079ec56d63d43c125ce0f8624b3</originalsourceid><addsrcrecordid>eNotzLtOwzAUgGGLi0RbWFhZ_AIpx_d4DBWXSkFFlMJG5TgnqVHjVHGWvj0gmP7p-wm5ZjBnDOzt8n3OAfK5hBMy4cKoDJjIT8kUjLZKcJ2LMzJhSkGmQZgLMk3pC0AqZdSEfBb0Ayu6Sa5F-hxiiC0tDoehd35H71zCmvaRlos1LfZtP4Rx19EQ6SruQ0T6MmAd_PiLXtH3XYexdmP4EetjGrFLl-S8cfuEV_-dkc3D_dviKStXj8tFUWYt13rMkFttrXSV1E2uDHeCVUJjg9zl2lcGfJMDgrHola61qKXwjCuP0OSay0rMyM3fNyDi9jCEzg3HrVTGWC3ENynwUwE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jalali, M. ; Mustapha, N. ; Sulaiman, N.B. ; Mamat, A.</creator><creatorcontrib>Jalali, M. ; Mustapha, N. ; Sulaiman, N.B. ; Mamat, A.</creatorcontrib><description>The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.</description><identifier>ISSN: 1550-6037</identifier><identifier>ISBN: 0769532683</identifier><identifier>ISBN: 9780769532684</identifier><identifier>EISSN: 2375-0138</identifier><identifier>DOI: 10.1109/IV.2008.40</identifier><language>eng</language><publisher>IEEE</publisher><subject>Longest Common Subsequense ; Online classification ; Web Usage Mining</subject><ispartof>2008 12th International Conference Information Visualisation, 2008, p.302-307</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4577963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4577963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jalali, M.</creatorcontrib><creatorcontrib>Mustapha, N.</creatorcontrib><creatorcontrib>Sulaiman, N.B.</creatorcontrib><creatorcontrib>Mamat, A.</creatorcontrib><title>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</title><title>2008 12th International Conference Information Visualisation</title><addtitle>IV</addtitle><description>The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.</description><subject>Longest Common Subsequense</subject><subject>Online classification</subject><subject>Web Usage Mining</subject><issn>1550-6037</issn><issn>2375-0138</issn><isbn>0769532683</isbn><isbn>9780769532684</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLtOwzAUgGGLi0RbWFhZ_AIpx_d4DBWXSkFFlMJG5TgnqVHjVHGWvj0gmP7p-wm5ZjBnDOzt8n3OAfK5hBMy4cKoDJjIT8kUjLZKcJ2LMzJhSkGmQZgLMk3pC0AqZdSEfBb0Ayu6Sa5F-hxiiC0tDoehd35H71zCmvaRlos1LfZtP4Rx19EQ6SruQ0T6MmAd_PiLXtH3XYexdmP4EetjGrFLl-S8cfuEV_-dkc3D_dviKStXj8tFUWYt13rMkFttrXSV1E2uDHeCVUJjg9zl2lcGfJMDgrHola61qKXwjCuP0OSay0rMyM3fNyDi9jCEzg3HrVTGWC3ENynwUwE</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Jalali, M.</creator><creator>Mustapha, N.</creator><creator>Sulaiman, N.B.</creator><creator>Mamat, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</title><author>Jalali, M. ; Mustapha, N. ; Sulaiman, N.B. ; Mamat, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g266t-e296994ab46f8572a31b36efe2a86cb70cf80e079ec56d63d43c125ce0f8624b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Longest Common Subsequense</topic><topic>Online classification</topic><topic>Web Usage Mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Jalali, M.</creatorcontrib><creatorcontrib>Mustapha, N.</creatorcontrib><creatorcontrib>Sulaiman, N.B.</creatorcontrib><creatorcontrib>Mamat, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jalali, M.</au><au>Mustapha, N.</au><au>Sulaiman, N.B.</au><au>Mamat, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</atitle><btitle>2008 12th International Conference Information Visualisation</btitle><stitle>IV</stitle><date>2008-07</date><risdate>2008</risdate><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>1550-6037</issn><eissn>2375-0138</eissn><isbn>0769532683</isbn><isbn>9780769532684</isbn><abstract>The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.</abstract><pub>IEEE</pub><doi>10.1109/IV.2008.40</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-6037
ispartof 2008 12th International Conference Information Visualisation, 2008, p.302-307
issn 1550-6037
2375-0138
language eng
recordid cdi_ieee_primary_4577963
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Longest Common Subsequense
Online classification
Web Usage Mining
title A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Web%20Usage%20Mining%20Approach%20Based%20on%20LCS%20Algorithm%20in%20Online%20Predicting%20Recommendation%20Systems&rft.btitle=2008%2012th%20International%20Conference%20Information%20Visualisation&rft.au=Jalali,%20M.&rft.date=2008-07&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=1550-6037&rft.eissn=2375-0138&rft.isbn=0769532683&rft.isbn_list=9780769532684&rft_id=info:doi/10.1109/IV.2008.40&rft_dat=%3Cieee_6IE%3E4577963%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4577963&rfr_iscdi=true