A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems
The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and us...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | |
container_start_page | 302 |
container_title | |
container_volume | |
creator | Jalali, M. Mustapha, N. Sulaiman, N.B. Mamat, A. |
description | The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture. |
doi_str_mv | 10.1109/IV.2008.40 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4577963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4577963</ieee_id><sourcerecordid>4577963</sourcerecordid><originalsourceid>FETCH-LOGICAL-g266t-e296994ab46f8572a31b36efe2a86cb70cf80e079ec56d63d43c125ce0f8624b3</originalsourceid><addsrcrecordid>eNotzLtOwzAUgGGLi0RbWFhZ_AIpx_d4DBWXSkFFlMJG5TgnqVHjVHGWvj0gmP7p-wm5ZjBnDOzt8n3OAfK5hBMy4cKoDJjIT8kUjLZKcJ2LMzJhSkGmQZgLMk3pC0AqZdSEfBb0Ayu6Sa5F-hxiiC0tDoehd35H71zCmvaRlos1LfZtP4Rx19EQ6SruQ0T6MmAd_PiLXtH3XYexdmP4EetjGrFLl-S8cfuEV_-dkc3D_dviKStXj8tFUWYt13rMkFttrXSV1E2uDHeCVUJjg9zl2lcGfJMDgrHola61qKXwjCuP0OSay0rMyM3fNyDi9jCEzg3HrVTGWC3ENynwUwE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jalali, M. ; Mustapha, N. ; Sulaiman, N.B. ; Mamat, A.</creator><creatorcontrib>Jalali, M. ; Mustapha, N. ; Sulaiman, N.B. ; Mamat, A.</creatorcontrib><description>The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.</description><identifier>ISSN: 1550-6037</identifier><identifier>ISBN: 0769532683</identifier><identifier>ISBN: 9780769532684</identifier><identifier>EISSN: 2375-0138</identifier><identifier>DOI: 10.1109/IV.2008.40</identifier><language>eng</language><publisher>IEEE</publisher><subject>Longest Common Subsequense ; Online classification ; Web Usage Mining</subject><ispartof>2008 12th International Conference Information Visualisation, 2008, p.302-307</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4577963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4577963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jalali, M.</creatorcontrib><creatorcontrib>Mustapha, N.</creatorcontrib><creatorcontrib>Sulaiman, N.B.</creatorcontrib><creatorcontrib>Mamat, A.</creatorcontrib><title>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</title><title>2008 12th International Conference Information Visualisation</title><addtitle>IV</addtitle><description>The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.</description><subject>Longest Common Subsequense</subject><subject>Online classification</subject><subject>Web Usage Mining</subject><issn>1550-6037</issn><issn>2375-0138</issn><isbn>0769532683</isbn><isbn>9780769532684</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLtOwzAUgGGLi0RbWFhZ_AIpx_d4DBWXSkFFlMJG5TgnqVHjVHGWvj0gmP7p-wm5ZjBnDOzt8n3OAfK5hBMy4cKoDJjIT8kUjLZKcJ2LMzJhSkGmQZgLMk3pC0AqZdSEfBb0Ayu6Sa5F-hxiiC0tDoehd35H71zCmvaRlos1LfZtP4Rx19EQ6SruQ0T6MmAd_PiLXtH3XYexdmP4EetjGrFLl-S8cfuEV_-dkc3D_dviKStXj8tFUWYt13rMkFttrXSV1E2uDHeCVUJjg9zl2lcGfJMDgrHola61qKXwjCuP0OSay0rMyM3fNyDi9jCEzg3HrVTGWC3ENynwUwE</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Jalali, M.</creator><creator>Mustapha, N.</creator><creator>Sulaiman, N.B.</creator><creator>Mamat, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</title><author>Jalali, M. ; Mustapha, N. ; Sulaiman, N.B. ; Mamat, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g266t-e296994ab46f8572a31b36efe2a86cb70cf80e079ec56d63d43c125ce0f8624b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Longest Common Subsequense</topic><topic>Online classification</topic><topic>Web Usage Mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Jalali, M.</creatorcontrib><creatorcontrib>Mustapha, N.</creatorcontrib><creatorcontrib>Sulaiman, N.B.</creatorcontrib><creatorcontrib>Mamat, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jalali, M.</au><au>Mustapha, N.</au><au>Sulaiman, N.B.</au><au>Mamat, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems</atitle><btitle>2008 12th International Conference Information Visualisation</btitle><stitle>IV</stitle><date>2008-07</date><risdate>2008</risdate><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>1550-6037</issn><eissn>2375-0138</eissn><isbn>0769532683</isbn><isbn>9780769532684</isbn><abstract>The Internet is one of the fastest growing areas of intelligence gathering. During their navigation Web users leave many records of their activity. This huge amount of data can be a useful source of knowledge. Advanced mining processes are needed for this knowledge to be extracted, understood and used. Web Usage Mining (WUM) systems are specifically designed to carry out this task by analyzing the data representing usage data about a particular Web site. WUM can model user behavior and, therefore, to forecast their future movements. Online prediction is one Web Usage Mining application. However, the accuracy of the prediction and classification in the current architecture of predicting users' future requests systems can not still satisfy users especially in huge Web sites. To provide online prediction efficiently, we advance an architecture for online predicting in Web Usage Mining system and propose a novel approach based on LCS algorithm for classifying user navigation patterns for predicting users' future requests. The Excremental results show that the approach can improve accuracy of classification in the architecture.</abstract><pub>IEEE</pub><doi>10.1109/IV.2008.40</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-6037 |
ispartof | 2008 12th International Conference Information Visualisation, 2008, p.302-307 |
issn | 1550-6037 2375-0138 |
language | eng |
recordid | cdi_ieee_primary_4577963 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Longest Common Subsequense Online classification Web Usage Mining |
title | A Web Usage Mining Approach Based on LCS Algorithm in Online Predicting Recommendation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Web%20Usage%20Mining%20Approach%20Based%20on%20LCS%20Algorithm%20in%20Online%20Predicting%20Recommendation%20Systems&rft.btitle=2008%2012th%20International%20Conference%20Information%20Visualisation&rft.au=Jalali,%20M.&rft.date=2008-07&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=1550-6037&rft.eissn=2375-0138&rft.isbn=0769532683&rft.isbn_list=9780769532684&rft_id=info:doi/10.1109/IV.2008.40&rft_dat=%3Cieee_6IE%3E4577963%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4577963&rfr_iscdi=true |