Nonnegative singular value decomposition for microarray data analysis of spermatogenesis

Matrix factorization plays an important role in scientific computation. The widely used one is singular value decomposition (SVD) which approximates the original data matrix with three lower rank matrices with orthogonality constraints. Recently nonnegative matrix factorization (NMF) considering the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weixiang Liu, Aifa Tang, Datian Ye, Zhen Ji
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue
container_start_page 225
container_title
container_volume
creator Weixiang Liu
Aifa Tang
Datian Ye
Zhen Ji
description Matrix factorization plays an important role in scientific computation. The widely used one is singular value decomposition (SVD) which approximates the original data matrix with three lower rank matrices with orthogonality constraints. Recently nonnegative matrix factorization (NMF) considering the nonnegativity of data makes the results more interpretable than those of SVD. However NMF finds only two factor matrices and there is no significant index as singular values of SVD which can be used for sorting learned basis vectors. In this paper we take into account the nonnegativity for SVD and propose nonnegative SVD (NNSVD). The preliminary results on the microarray data of spermatogenesis show that NNSVD has advantages of both SVD and NMF.
doi_str_mv 10.1109/ITAB.2008.4570528
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4570528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4570528</ieee_id><sourcerecordid>4570528</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3d739d2a5402ec959a9158fd56f0b6de44ab7a98e230ddcf7ac50e7854897f4f3</originalsourceid><addsrcrecordid>eNo1kE1rAjEYhNMPoWr9AaWX_IG1STbZJEcr_RCkvXjoTV43byRldyPJKvjvu6V1LgPzwMAMIQ-czTln9mm1WTzPBWNmLpVmSpgrMuFSSCmEUuaajAWvTCEEMzdkZrW5MGluL4xbOSKT3w7LuK3kHZnl_M0GmYHbaky-PmLX4R76cEKaQ7c_NpDoCZojUod1bA8xhz7EjvqYaBvqFCElOFMHPVDooDnnkGn0NB8wtdDHPXY4RPdk5KHJOPv3Kdm8vmyW78X68221XKyLYFlflE6X1glQkgmsrbJguTLeqcqzXeVQSthpsAZFyZyrvYZaMdRmGGm1l76ckse_2oCI20MKLaTz9v-w8gddSFqI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonnegative singular value decomposition for microarray data analysis of spermatogenesis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weixiang Liu ; Aifa Tang ; Datian Ye ; Zhen Ji</creator><creatorcontrib>Weixiang Liu ; Aifa Tang ; Datian Ye ; Zhen Ji</creatorcontrib><description>Matrix factorization plays an important role in scientific computation. The widely used one is singular value decomposition (SVD) which approximates the original data matrix with three lower rank matrices with orthogonality constraints. Recently nonnegative matrix factorization (NMF) considering the nonnegativity of data makes the results more interpretable than those of SVD. However NMF finds only two factor matrices and there is no significant index as singular values of SVD which can be used for sorting learned basis vectors. In this paper we take into account the nonnegativity for SVD and propose nonnegative SVD (NNSVD). The preliminary results on the microarray data of spermatogenesis show that NNSVD has advantages of both SVD and NMF.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISBN: 9781424422548</identifier><identifier>ISBN: 142442254X</identifier><identifier>EISSN: 2168-2208</identifier><identifier>EISBN: 1424422558</identifier><identifier>EISBN: 9781424422555</identifier><identifier>DOI: 10.1109/ITAB.2008.4570528</identifier><identifier>LCCN: 2008901964</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical computing ; Biomedical engineering ; Data analysis ; Data engineering ; Gene expression ; Information technology ; Matrix decomposition ; Pattern analysis ; Singular value decomposition ; Sorting</subject><ispartof>2008 International Conference on Information Technology and Applications in Biomedicine, 2008, p.225-228</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4570528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4570528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weixiang Liu</creatorcontrib><creatorcontrib>Aifa Tang</creatorcontrib><creatorcontrib>Datian Ye</creatorcontrib><creatorcontrib>Zhen Ji</creatorcontrib><title>Nonnegative singular value decomposition for microarray data analysis of spermatogenesis</title><title>2008 International Conference on Information Technology and Applications in Biomedicine</title><addtitle>ITAB</addtitle><description>Matrix factorization plays an important role in scientific computation. The widely used one is singular value decomposition (SVD) which approximates the original data matrix with three lower rank matrices with orthogonality constraints. Recently nonnegative matrix factorization (NMF) considering the nonnegativity of data makes the results more interpretable than those of SVD. However NMF finds only two factor matrices and there is no significant index as singular values of SVD which can be used for sorting learned basis vectors. In this paper we take into account the nonnegativity for SVD and propose nonnegative SVD (NNSVD). The preliminary results on the microarray data of spermatogenesis show that NNSVD has advantages of both SVD and NMF.</description><subject>Biomedical computing</subject><subject>Biomedical engineering</subject><subject>Data analysis</subject><subject>Data engineering</subject><subject>Gene expression</subject><subject>Information technology</subject><subject>Matrix decomposition</subject><subject>Pattern analysis</subject><subject>Singular value decomposition</subject><subject>Sorting</subject><issn>2168-2194</issn><issn>2168-2208</issn><isbn>9781424422548</isbn><isbn>142442254X</isbn><isbn>1424422558</isbn><isbn>9781424422555</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1rAjEYhNMPoWr9AaWX_IG1STbZJEcr_RCkvXjoTV43byRldyPJKvjvu6V1LgPzwMAMIQ-czTln9mm1WTzPBWNmLpVmSpgrMuFSSCmEUuaajAWvTCEEMzdkZrW5MGluL4xbOSKT3w7LuK3kHZnl_M0GmYHbaky-PmLX4R76cEKaQ7c_NpDoCZojUod1bA8xhz7EjvqYaBvqFCElOFMHPVDooDnnkGn0NB8wtdDHPXY4RPdk5KHJOPv3Kdm8vmyW78X68221XKyLYFlflE6X1glQkgmsrbJguTLeqcqzXeVQSthpsAZFyZyrvYZaMdRmGGm1l76ckse_2oCI20MKLaTz9v-w8gddSFqI</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Weixiang Liu</creator><creator>Aifa Tang</creator><creator>Datian Ye</creator><creator>Zhen Ji</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Nonnegative singular value decomposition for microarray data analysis of spermatogenesis</title><author>Weixiang Liu ; Aifa Tang ; Datian Ye ; Zhen Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3d739d2a5402ec959a9158fd56f0b6de44ab7a98e230ddcf7ac50e7854897f4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical computing</topic><topic>Biomedical engineering</topic><topic>Data analysis</topic><topic>Data engineering</topic><topic>Gene expression</topic><topic>Information technology</topic><topic>Matrix decomposition</topic><topic>Pattern analysis</topic><topic>Singular value decomposition</topic><topic>Sorting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weixiang Liu</creatorcontrib><creatorcontrib>Aifa Tang</creatorcontrib><creatorcontrib>Datian Ye</creatorcontrib><creatorcontrib>Zhen Ji</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weixiang Liu</au><au>Aifa Tang</au><au>Datian Ye</au><au>Zhen Ji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonnegative singular value decomposition for microarray data analysis of spermatogenesis</atitle><btitle>2008 International Conference on Information Technology and Applications in Biomedicine</btitle><stitle>ITAB</stitle><date>2008-05</date><risdate>2008</risdate><spage>225</spage><epage>228</epage><pages>225-228</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><isbn>9781424422548</isbn><isbn>142442254X</isbn><eisbn>1424422558</eisbn><eisbn>9781424422555</eisbn><abstract>Matrix factorization plays an important role in scientific computation. The widely used one is singular value decomposition (SVD) which approximates the original data matrix with three lower rank matrices with orthogonality constraints. Recently nonnegative matrix factorization (NMF) considering the nonnegativity of data makes the results more interpretable than those of SVD. However NMF finds only two factor matrices and there is no significant index as singular values of SVD which can be used for sorting learned basis vectors. In this paper we take into account the nonnegativity for SVD and propose nonnegative SVD (NNSVD). The preliminary results on the microarray data of spermatogenesis show that NNSVD has advantages of both SVD and NMF.</abstract><pub>IEEE</pub><doi>10.1109/ITAB.2008.4570528</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof 2008 International Conference on Information Technology and Applications in Biomedicine, 2008, p.225-228
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_4570528
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical computing
Biomedical engineering
Data analysis
Data engineering
Gene expression
Information technology
Matrix decomposition
Pattern analysis
Singular value decomposition
Sorting
title Nonnegative singular value decomposition for microarray data analysis of spermatogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonnegative%20singular%20value%20decomposition%20for%20microarray%20data%20analysis%20of%20spermatogenesis&rft.btitle=2008%20International%20Conference%20on%20Information%20Technology%20and%20Applications%20in%20Biomedicine&rft.au=Weixiang%20Liu&rft.date=2008-05&rft.spage=225&rft.epage=228&rft.pages=225-228&rft.issn=2168-2194&rft.eissn=2168-2208&rft.isbn=9781424422548&rft.isbn_list=142442254X&rft_id=info:doi/10.1109/ITAB.2008.4570528&rft_dat=%3Cieee_6IE%3E4570528%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424422558&rft.eisbn_list=9781424422555&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4570528&rfr_iscdi=true