Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems

Statistical sensitivity in discrete-time state-space linear systems is defined, using a virtual system whose coefficients are stochastically varied. The necessary and sufficient condition for the mean-square asymptotical stability is obtained by analyzing the convergence of the state covariance matr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems 1990-01, Vol.37 (1), p.72-80
Hauptverfasser: Iwatsuki, M., Kawamata, M., Higuchi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 72
container_title IEEE transactions on circuits and systems
container_volume 37
creator Iwatsuki, M.
Kawamata, M.
Higuchi, T.
description Statistical sensitivity in discrete-time state-space linear systems is defined, using a virtual system whose coefficients are stochastically varied. The necessary and sufficient condition for the mean-square asymptotical stability is obtained by analyzing the convergence of the state covariance matrix of the virtual system. This condition determines an upper bound on the variance of coefficient variations that guarantees stochastic stability. Minimum-sensitivity structures can be synthesized by using two assumptions to simplify the sensitivity measure. The minimum-sensitivity structures have many more coefficients than the other canonical structures in general. The authors synthesize minimum-sensitivity structures that have fewer coefficients and lower sensitivity than the usual minimum-sensitivity structures. The number of coefficients depends on the pole-zero configuration of the transfer function. Two numerical examples show that the minimum-sensitivity structures have much lower sensitivity than the other realizations.< >
doi_str_mv 10.1109/31.45693
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_45693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>45693</ieee_id><sourcerecordid>10_1109_31_45693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-2201c2a0e3cbf21eaca7151e6b67b329a5b3ba7d956d560ebeff9a4bb39a5c2f3</originalsourceid><addsrcrecordid>eNpVkM1LxDAUxIMoWFfBq7ccvXTNR9M2R1l0FRY8qOeSpC_4pO1KXtZl_3tXVwRPAzM_hmEYu5RiLqWwN1rOK1NbfcQKaUxbStXUx6wQwrZlJWx1ys6I3oUQrW3bgqXn7DJSxuAGTjARZvzEvONu6vmIE46b8Z9POW1C3iQgvsX8xiNsIfGwhhgxIEyZOE68RwoJMvCMI_ABJ3CJ044yjHTOTqIbCC5-dcZe7-9eFg_l6mn5uLhdlUFVOpdKCRmUE6CDj0qCC66RRkLt68ZrZZ3x2rumt6buTS3A7xdYV3mv91FQUc_Y9aE3pDVRgth9JBxd2nVSdN9fdVp2P1_t0asDigDwhx2yL8CuaJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems</title><source>IEEE Electronic Library (IEL)</source><creator>Iwatsuki, M. ; Kawamata, M. ; Higuchi, T.</creator><creatorcontrib>Iwatsuki, M. ; Kawamata, M. ; Higuchi, T.</creatorcontrib><description>Statistical sensitivity in discrete-time state-space linear systems is defined, using a virtual system whose coefficients are stochastically varied. The necessary and sufficient condition for the mean-square asymptotical stability is obtained by analyzing the convergence of the state covariance matrix of the virtual system. This condition determines an upper bound on the variance of coefficient variations that guarantees stochastic stability. Minimum-sensitivity structures can be synthesized by using two assumptions to simplify the sensitivity measure. The minimum-sensitivity structures have many more coefficients than the other canonical structures in general. The authors synthesize minimum-sensitivity structures that have fewer coefficients and lower sensitivity than the usual minimum-sensitivity structures. The number of coefficients depends on the pole-zero configuration of the transfer function. Two numerical examples show that the minimum-sensitivity structures have much lower sensitivity than the other realizations.&lt; &gt;</description><identifier>ISSN: 0098-4094</identifier><identifier>EISSN: 1558-1276</identifier><identifier>DOI: 10.1109/31.45693</identifier><identifier>CODEN: ICSYBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Covariance matrix ; Digital filters ; Linear systems ; Quantization ; Stability analysis ; Stochastic processes ; Sufficient conditions ; Transfer functions ; Upper bound</subject><ispartof>IEEE transactions on circuits and systems, 1990-01, Vol.37 (1), p.72-80</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-2201c2a0e3cbf21eaca7151e6b67b329a5b3ba7d956d560ebeff9a4bb39a5c2f3</citedby><cites>FETCH-LOGICAL-c243t-2201c2a0e3cbf21eaca7151e6b67b329a5b3ba7d956d560ebeff9a4bb39a5c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/45693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/45693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iwatsuki, M.</creatorcontrib><creatorcontrib>Kawamata, M.</creatorcontrib><creatorcontrib>Higuchi, T.</creatorcontrib><title>Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems</title><title>IEEE transactions on circuits and systems</title><addtitle>T-CAS</addtitle><description>Statistical sensitivity in discrete-time state-space linear systems is defined, using a virtual system whose coefficients are stochastically varied. The necessary and sufficient condition for the mean-square asymptotical stability is obtained by analyzing the convergence of the state covariance matrix of the virtual system. This condition determines an upper bound on the variance of coefficient variations that guarantees stochastic stability. Minimum-sensitivity structures can be synthesized by using two assumptions to simplify the sensitivity measure. The minimum-sensitivity structures have many more coefficients than the other canonical structures in general. The authors synthesize minimum-sensitivity structures that have fewer coefficients and lower sensitivity than the usual minimum-sensitivity structures. The number of coefficients depends on the pole-zero configuration of the transfer function. Two numerical examples show that the minimum-sensitivity structures have much lower sensitivity than the other realizations.&lt; &gt;</description><subject>Asymptotic stability</subject><subject>Covariance matrix</subject><subject>Digital filters</subject><subject>Linear systems</subject><subject>Quantization</subject><subject>Stability analysis</subject><subject>Stochastic processes</subject><subject>Sufficient conditions</subject><subject>Transfer functions</subject><subject>Upper bound</subject><issn>0098-4094</issn><issn>1558-1276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAUxIMoWFfBq7ccvXTNR9M2R1l0FRY8qOeSpC_4pO1KXtZl_3tXVwRPAzM_hmEYu5RiLqWwN1rOK1NbfcQKaUxbStXUx6wQwrZlJWx1ys6I3oUQrW3bgqXn7DJSxuAGTjARZvzEvONu6vmIE46b8Z9POW1C3iQgvsX8xiNsIfGwhhgxIEyZOE68RwoJMvCMI_ABJ3CJ044yjHTOTqIbCC5-dcZe7-9eFg_l6mn5uLhdlUFVOpdKCRmUE6CDj0qCC66RRkLt68ZrZZ3x2rumt6buTS3A7xdYV3mv91FQUc_Y9aE3pDVRgth9JBxd2nVSdN9fdVp2P1_t0asDigDwhx2yL8CuaJw</recordid><startdate>199001</startdate><enddate>199001</enddate><creator>Iwatsuki, M.</creator><creator>Kawamata, M.</creator><creator>Higuchi, T.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199001</creationdate><title>Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems</title><author>Iwatsuki, M. ; Kawamata, M. ; Higuchi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-2201c2a0e3cbf21eaca7151e6b67b329a5b3ba7d956d560ebeff9a4bb39a5c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Asymptotic stability</topic><topic>Covariance matrix</topic><topic>Digital filters</topic><topic>Linear systems</topic><topic>Quantization</topic><topic>Stability analysis</topic><topic>Stochastic processes</topic><topic>Sufficient conditions</topic><topic>Transfer functions</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Iwatsuki, M.</creatorcontrib><creatorcontrib>Kawamata, M.</creatorcontrib><creatorcontrib>Higuchi, T.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iwatsuki, M.</au><au>Kawamata, M.</au><au>Higuchi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems</atitle><jtitle>IEEE transactions on circuits and systems</jtitle><stitle>T-CAS</stitle><date>1990-01</date><risdate>1990</risdate><volume>37</volume><issue>1</issue><spage>72</spage><epage>80</epage><pages>72-80</pages><issn>0098-4094</issn><eissn>1558-1276</eissn><coden>ICSYBT</coden><abstract>Statistical sensitivity in discrete-time state-space linear systems is defined, using a virtual system whose coefficients are stochastically varied. The necessary and sufficient condition for the mean-square asymptotical stability is obtained by analyzing the convergence of the state covariance matrix of the virtual system. This condition determines an upper bound on the variance of coefficient variations that guarantees stochastic stability. Minimum-sensitivity structures can be synthesized by using two assumptions to simplify the sensitivity measure. The minimum-sensitivity structures have many more coefficients than the other canonical structures in general. The authors synthesize minimum-sensitivity structures that have fewer coefficients and lower sensitivity than the usual minimum-sensitivity structures. The number of coefficients depends on the pole-zero configuration of the transfer function. Two numerical examples show that the minimum-sensitivity structures have much lower sensitivity than the other realizations.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/31.45693</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-4094
ispartof IEEE transactions on circuits and systems, 1990-01, Vol.37 (1), p.72-80
issn 0098-4094
1558-1276
language eng
recordid cdi_ieee_primary_45693
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Covariance matrix
Digital filters
Linear systems
Quantization
Stability analysis
Stochastic processes
Sufficient conditions
Transfer functions
Upper bound
title Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20sensitivity%20and%20minimum%20sensitivity%20structures%20with%20fewer%20coefficients%20in%20discrete%20time%20linear%20systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems&rft.au=Iwatsuki,%20M.&rft.date=1990-01&rft.volume=37&rft.issue=1&rft.spage=72&rft.epage=80&rft.pages=72-80&rft.issn=0098-4094&rft.eissn=1558-1276&rft.coden=ICSYBT&rft_id=info:doi/10.1109/31.45693&rft_dat=%3Ccrossref_RIE%3E10_1109_31_45693%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=45693&rfr_iscdi=true