On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation

Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bo, Shukui, Ding, Lin, Jing, Yongju
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 719
container_issue
container_start_page 715
container_title
container_volume 3
creator Bo, Shukui
Ding, Lin
Jing, Yongju
description Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.
doi_str_mv 10.1109/CISP.2008.275
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4566576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4566576</ieee_id><sourcerecordid>4566576</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-306f683cbea9ecb5e568c89ed0bcdced106b3604a7d5270c5699040a3f0e300d3</originalsourceid><addsrcrecordid>eNotTE1Lw0AUXJCCWnP05CV_IPVtXnY3e5SgNVBssYrHstm8xJV8yCZS_PfdonOYYWaYYeyWw4pz0PdFud-tUoB8lSpxwSKtclBSC-Rc6wW7DpXSGXKBlyyapi8IQJ1pwCv2sR3iYuwrN7ihjV-pdeOQrP14PNujmz_jlxDsjDc9zd7ZuOh-ppn8uW5GH7Zd4LI3LcV7ansaZjOHjxu2aEw3UfSvS_b-9PhWPCeb7bosHjaJ40rMCYJsZI62IqPJVoKEzG2uqYbK1pZqDrJCCZlRtUgVWCG1hgwMNkAIUOOS3f39OiI6fHvXG_97yISUQkk8AQq3Uiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bo, Shukui ; Ding, Lin ; Jing, Yongju</creator><creatorcontrib>Bo, Shukui ; Ding, Lin ; Jing, Yongju</creatorcontrib><description>Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.</description><identifier>ISBN: 9780769531199</identifier><identifier>ISBN: 0769531199</identifier><identifier>DOI: 10.1109/CISP.2008.275</identifier><identifier>LCCN: 2007943153</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace industry ; Algorithm design and analysis ; Bandwidth ; clustering ; Clustering algorithms ; Computer science ; Image analysis ; Image color analysis ; Image segmentation ; Pixel ; region growing ; Signal processing</subject><ispartof>2008 Congress on Image and Signal Processing, 2008, Vol.3, p.715-719</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4566576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4566576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bo, Shukui</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Jing, Yongju</creatorcontrib><title>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</title><title>2008 Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.</description><subject>Aerospace industry</subject><subject>Algorithm design and analysis</subject><subject>Bandwidth</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Pixel</subject><subject>region growing</subject><subject>Signal processing</subject><isbn>9780769531199</isbn><isbn>0769531199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTE1Lw0AUXJCCWnP05CV_IPVtXnY3e5SgNVBssYrHstm8xJV8yCZS_PfdonOYYWaYYeyWw4pz0PdFud-tUoB8lSpxwSKtclBSC-Rc6wW7DpXSGXKBlyyapi8IQJ1pwCv2sR3iYuwrN7ihjV-pdeOQrP14PNujmz_jlxDsjDc9zd7ZuOh-ppn8uW5GH7Zd4LI3LcV7ansaZjOHjxu2aEw3UfSvS_b-9PhWPCeb7bosHjaJ40rMCYJsZI62IqPJVoKEzG2uqYbK1pZqDrJCCZlRtUgVWCG1hgwMNkAIUOOS3f39OiI6fHvXG_97yISUQkk8AQq3Uiw</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Bo, Shukui</creator><creator>Ding, Lin</creator><creator>Jing, Yongju</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</title><author>Bo, Shukui ; Ding, Lin ; Jing, Yongju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-306f683cbea9ecb5e568c89ed0bcdced106b3604a7d5270c5699040a3f0e300d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerospace industry</topic><topic>Algorithm design and analysis</topic><topic>Bandwidth</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Pixel</topic><topic>region growing</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bo, Shukui</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Jing, Yongju</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bo, Shukui</au><au>Ding, Lin</au><au>Jing, Yongju</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</atitle><btitle>2008 Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2008-05</date><risdate>2008</risdate><volume>3</volume><spage>715</spage><epage>719</epage><pages>715-719</pages><isbn>9780769531199</isbn><isbn>0769531199</isbn><abstract>Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2008.275</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769531199
ispartof 2008 Congress on Image and Signal Processing, 2008, Vol.3, p.715-719
issn
language eng
recordid cdi_ieee_primary_4566576
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace industry
Algorithm design and analysis
Bandwidth
clustering
Clustering algorithms
Computer science
Image analysis
Image color analysis
Image segmentation
Pixel
region growing
Signal processing
title On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Combining%20Region-Growing%20with%20Non-Parametric%20Clustering%20for%20Color%20Image%20Segmentation&rft.btitle=2008%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Bo,%20Shukui&rft.date=2008-05&rft.volume=3&rft.spage=715&rft.epage=719&rft.pages=715-719&rft.isbn=9780769531199&rft.isbn_list=0769531199&rft_id=info:doi/10.1109/CISP.2008.275&rft_dat=%3Cieee_6IE%3E4566576%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4566576&rfr_iscdi=true