On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation
Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 719 |
---|---|
container_issue | |
container_start_page | 715 |
container_title | |
container_volume | 3 |
creator | Bo, Shukui Ding, Lin Jing, Yongju |
description | Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images. |
doi_str_mv | 10.1109/CISP.2008.275 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4566576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4566576</ieee_id><sourcerecordid>4566576</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-306f683cbea9ecb5e568c89ed0bcdced106b3604a7d5270c5699040a3f0e300d3</originalsourceid><addsrcrecordid>eNotTE1Lw0AUXJCCWnP05CV_IPVtXnY3e5SgNVBssYrHstm8xJV8yCZS_PfdonOYYWaYYeyWw4pz0PdFud-tUoB8lSpxwSKtclBSC-Rc6wW7DpXSGXKBlyyapi8IQJ1pwCv2sR3iYuwrN7ihjV-pdeOQrP14PNujmz_jlxDsjDc9zd7ZuOh-ppn8uW5GH7Zd4LI3LcV7ansaZjOHjxu2aEw3UfSvS_b-9PhWPCeb7bosHjaJ40rMCYJsZI62IqPJVoKEzG2uqYbK1pZqDrJCCZlRtUgVWCG1hgwMNkAIUOOS3f39OiI6fHvXG_97yISUQkk8AQq3Uiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bo, Shukui ; Ding, Lin ; Jing, Yongju</creator><creatorcontrib>Bo, Shukui ; Ding, Lin ; Jing, Yongju</creatorcontrib><description>Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.</description><identifier>ISBN: 9780769531199</identifier><identifier>ISBN: 0769531199</identifier><identifier>DOI: 10.1109/CISP.2008.275</identifier><identifier>LCCN: 2007943153</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace industry ; Algorithm design and analysis ; Bandwidth ; clustering ; Clustering algorithms ; Computer science ; Image analysis ; Image color analysis ; Image segmentation ; Pixel ; region growing ; Signal processing</subject><ispartof>2008 Congress on Image and Signal Processing, 2008, Vol.3, p.715-719</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4566576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4566576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bo, Shukui</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Jing, Yongju</creatorcontrib><title>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</title><title>2008 Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.</description><subject>Aerospace industry</subject><subject>Algorithm design and analysis</subject><subject>Bandwidth</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Pixel</subject><subject>region growing</subject><subject>Signal processing</subject><isbn>9780769531199</isbn><isbn>0769531199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTE1Lw0AUXJCCWnP05CV_IPVtXnY3e5SgNVBssYrHstm8xJV8yCZS_PfdonOYYWaYYeyWw4pz0PdFud-tUoB8lSpxwSKtclBSC-Rc6wW7DpXSGXKBlyyapi8IQJ1pwCv2sR3iYuwrN7ihjV-pdeOQrP14PNujmz_jlxDsjDc9zd7ZuOh-ppn8uW5GH7Zd4LI3LcV7ansaZjOHjxu2aEw3UfSvS_b-9PhWPCeb7bosHjaJ40rMCYJsZI62IqPJVoKEzG2uqYbK1pZqDrJCCZlRtUgVWCG1hgwMNkAIUOOS3f39OiI6fHvXG_97yISUQkk8AQq3Uiw</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Bo, Shukui</creator><creator>Ding, Lin</creator><creator>Jing, Yongju</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</title><author>Bo, Shukui ; Ding, Lin ; Jing, Yongju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-306f683cbea9ecb5e568c89ed0bcdced106b3604a7d5270c5699040a3f0e300d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerospace industry</topic><topic>Algorithm design and analysis</topic><topic>Bandwidth</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Pixel</topic><topic>region growing</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bo, Shukui</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Jing, Yongju</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bo, Shukui</au><au>Ding, Lin</au><au>Jing, Yongju</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation</atitle><btitle>2008 Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2008-05</date><risdate>2008</risdate><volume>3</volume><spage>715</spage><epage>719</epage><pages>715-719</pages><isbn>9780769531199</isbn><isbn>0769531199</isbn><abstract>Region-based and clustering-based techniques are two of the most important segmentation methods, and both of them have their advantages and disadvantages. In this paper, we present a color image segmentation method combining region-growing with non-parametric clustering technique. First, a bottom-up region-merging technique is used to yield an intermediate result. This procedure takes into account simultaneously the spectral properties of pixels as well as their spatial information, which is not fully utilized in clustering technique. Second, a clustering technique based on mean shift algorithm is used to cluster similar image objects in the intermediate result. In the mean shift procedure, we adopt adaptive bandwidths instead of a single one over the entire feature space. The two steps of image segmentation are performed in an unsupervised way. The validity of the proposed method is verified on various color images.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2008.275</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769531199 |
ispartof | 2008 Congress on Image and Signal Processing, 2008, Vol.3, p.715-719 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4566576 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace industry Algorithm design and analysis Bandwidth clustering Clustering algorithms Computer science Image analysis Image color analysis Image segmentation Pixel region growing Signal processing |
title | On Combining Region-Growing with Non-Parametric Clustering for Color Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Combining%20Region-Growing%20with%20Non-Parametric%20Clustering%20for%20Color%20Image%20Segmentation&rft.btitle=2008%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Bo,%20Shukui&rft.date=2008-05&rft.volume=3&rft.spage=715&rft.epage=719&rft.pages=715-719&rft.isbn=9780769531199&rft.isbn_list=0769531199&rft_id=info:doi/10.1109/CISP.2008.275&rft_dat=%3Cieee_6IE%3E4566576%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4566576&rfr_iscdi=true |