Parallel architecture for PCA image feature detection using FPGA

This paper describes a parallel architecture for image feature detection implemented using an FPGA. The image features are detected using a localized PCA (principle component analysis) pattern matching scheme. An offline training phase identifies sub-windows surrounding salient points in an object w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fang Zhong, Capson, D.W., Schuurman, D.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 001344
container_issue
container_start_page 001341
container_title
container_volume
creator Fang Zhong
Capson, D.W.
Schuurman, D.C.
description This paper describes a parallel architecture for image feature detection implemented using an FPGA. The image features are detected using a localized PCA (principle component analysis) pattern matching scheme. An offline training phase identifies sub-windows surrounding salient points in an object which are then projected into eigenspace. Sub-windows from an input image can then be projected into the same eigenspace in order to recognize the same feature points in other images. An FPGA is developed to sequentially project a 10times10 sub-window surrounding each and every pixel into eigenspace so that features can be detected in an image. The FPGA uses parallel dot-product blocks with parallel multipliers and parallel comparators to enable rapid feature detection for sub-windows. Simulations are performed to determine the feasibility of using an FPGA along with the number of required logic elements and the timing requirements.
doi_str_mv 10.1109/CCECE.2008.4564758
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4564758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4564758</ieee_id><sourcerecordid>4564758</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bab1d92a1afffa6ee269e81e535e8206814dc11ae47d883866c1bbecf1c0ae013</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2fRCh9Abj4BRJ2Hcd2bkRRWpAqkUPv1cbZlKDQIic98PaU0gun0cwnjUYjxANCggj5U1lWZZUoAJfozGibuQsxz61DrbRGo1O8FJHKrIktaHP1jyl9LSJwGmJrXX4r7sbxAwC0MzoSzzUFGgYeJAX_3k_sp0Ng2e2DrMtC9p-0PTqmU9ryL-_3O3kY-91WLuplcS9uOhpGnp91JtaLal2-xKu35WtZrOI-hyluqME2V4TUdR0ZZmVydshZmrFTYI5jW49IrG3rXOqM8dg07Dv0QAyYzsTjX23PzJuvcBwWvjfnL9If0LtOMg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel architecture for PCA image feature detection using FPGA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fang Zhong ; Capson, D.W. ; Schuurman, D.C.</creator><creatorcontrib>Fang Zhong ; Capson, D.W. ; Schuurman, D.C.</creatorcontrib><description>This paper describes a parallel architecture for image feature detection implemented using an FPGA. The image features are detected using a localized PCA (principle component analysis) pattern matching scheme. An offline training phase identifies sub-windows surrounding salient points in an object which are then projected into eigenspace. Sub-windows from an input image can then be projected into the same eigenspace in order to recognize the same feature points in other images. An FPGA is developed to sequentially project a 10times10 sub-window surrounding each and every pixel into eigenspace so that features can be detected in an image. The FPGA uses parallel dot-product blocks with parallel multipliers and parallel comparators to enable rapid feature detection for sub-windows. Simulations are performed to determine the feasibility of using an FPGA along with the number of required logic elements and the timing requirements.</description><identifier>ISSN: 0840-7789</identifier><identifier>ISBN: 9781424416424</identifier><identifier>ISBN: 1424416426</identifier><identifier>EISSN: 2576-7046</identifier><identifier>EISBN: 9781424416431</identifier><identifier>EISBN: 1424416434</identifier><identifier>DOI: 10.1109/CCECE.2008.4564758</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Field programmable gate arrays ; FPGA ; Image analysis ; Image recognition ; Logic ; Parallel architectures ; Pattern analysis ; Pattern matching ; PCA ; Pixel ; Principal component analysis</subject><ispartof>2008 Canadian Conference on Electrical and Computer Engineering, 2008, p.001341-001344</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4564758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4564758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang Zhong</creatorcontrib><creatorcontrib>Capson, D.W.</creatorcontrib><creatorcontrib>Schuurman, D.C.</creatorcontrib><title>Parallel architecture for PCA image feature detection using FPGA</title><title>2008 Canadian Conference on Electrical and Computer Engineering</title><addtitle>CCECE</addtitle><description>This paper describes a parallel architecture for image feature detection implemented using an FPGA. The image features are detected using a localized PCA (principle component analysis) pattern matching scheme. An offline training phase identifies sub-windows surrounding salient points in an object which are then projected into eigenspace. Sub-windows from an input image can then be projected into the same eigenspace in order to recognize the same feature points in other images. An FPGA is developed to sequentially project a 10times10 sub-window surrounding each and every pixel into eigenspace so that features can be detected in an image. The FPGA uses parallel dot-product blocks with parallel multipliers and parallel comparators to enable rapid feature detection for sub-windows. Simulations are performed to determine the feasibility of using an FPGA along with the number of required logic elements and the timing requirements.</description><subject>Computer vision</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Image analysis</subject><subject>Image recognition</subject><subject>Logic</subject><subject>Parallel architectures</subject><subject>Pattern analysis</subject><subject>Pattern matching</subject><subject>PCA</subject><subject>Pixel</subject><subject>Principal component analysis</subject><issn>0840-7789</issn><issn>2576-7046</issn><isbn>9781424416424</isbn><isbn>1424416426</isbn><isbn>9781424416431</isbn><isbn>1424416434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhM2fRCh9Abj4BRJ2Hcd2bkRRWpAqkUPv1cbZlKDQIic98PaU0gun0cwnjUYjxANCggj5U1lWZZUoAJfozGibuQsxz61DrbRGo1O8FJHKrIktaHP1jyl9LSJwGmJrXX4r7sbxAwC0MzoSzzUFGgYeJAX_3k_sp0Ng2e2DrMtC9p-0PTqmU9ryL-_3O3kY-91WLuplcS9uOhpGnp91JtaLal2-xKu35WtZrOI-hyluqME2V4TUdR0ZZmVydshZmrFTYI5jW49IrG3rXOqM8dg07Dv0QAyYzsTjX23PzJuvcBwWvjfnL9If0LtOMg</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Fang Zhong</creator><creator>Capson, D.W.</creator><creator>Schuurman, D.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200805</creationdate><title>Parallel architecture for PCA image feature detection using FPGA</title><author>Fang Zhong ; Capson, D.W. ; Schuurman, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bab1d92a1afffa6ee269e81e535e8206814dc11ae47d883866c1bbecf1c0ae013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer vision</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Image analysis</topic><topic>Image recognition</topic><topic>Logic</topic><topic>Parallel architectures</topic><topic>Pattern analysis</topic><topic>Pattern matching</topic><topic>PCA</topic><topic>Pixel</topic><topic>Principal component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fang Zhong</creatorcontrib><creatorcontrib>Capson, D.W.</creatorcontrib><creatorcontrib>Schuurman, D.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang Zhong</au><au>Capson, D.W.</au><au>Schuurman, D.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel architecture for PCA image feature detection using FPGA</atitle><btitle>2008 Canadian Conference on Electrical and Computer Engineering</btitle><stitle>CCECE</stitle><date>2008-05</date><risdate>2008</risdate><spage>001341</spage><epage>001344</epage><pages>001341-001344</pages><issn>0840-7789</issn><eissn>2576-7046</eissn><isbn>9781424416424</isbn><isbn>1424416426</isbn><eisbn>9781424416431</eisbn><eisbn>1424416434</eisbn><abstract>This paper describes a parallel architecture for image feature detection implemented using an FPGA. The image features are detected using a localized PCA (principle component analysis) pattern matching scheme. An offline training phase identifies sub-windows surrounding salient points in an object which are then projected into eigenspace. Sub-windows from an input image can then be projected into the same eigenspace in order to recognize the same feature points in other images. An FPGA is developed to sequentially project a 10times10 sub-window surrounding each and every pixel into eigenspace so that features can be detected in an image. The FPGA uses parallel dot-product blocks with parallel multipliers and parallel comparators to enable rapid feature detection for sub-windows. Simulations are performed to determine the feasibility of using an FPGA along with the number of required logic elements and the timing requirements.</abstract><pub>IEEE</pub><doi>10.1109/CCECE.2008.4564758</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0840-7789
ispartof 2008 Canadian Conference on Electrical and Computer Engineering, 2008, p.001341-001344
issn 0840-7789
2576-7046
language eng
recordid cdi_ieee_primary_4564758
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Field programmable gate arrays
FPGA
Image analysis
Image recognition
Logic
Parallel architectures
Pattern analysis
Pattern matching
PCA
Pixel
Principal component analysis
title Parallel architecture for PCA image feature detection using FPGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20architecture%20for%20PCA%20image%20feature%20detection%20using%20FPGA&rft.btitle=2008%20Canadian%20Conference%20on%20Electrical%20and%20Computer%20Engineering&rft.au=Fang%20Zhong&rft.date=2008-05&rft.spage=001341&rft.epage=001344&rft.pages=001341-001344&rft.issn=0840-7789&rft.eissn=2576-7046&rft.isbn=9781424416424&rft.isbn_list=1424416426&rft_id=info:doi/10.1109/CCECE.2008.4564758&rft_dat=%3Cieee_6IE%3E4564758%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416431&rft.eisbn_list=1424416434&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4564758&rfr_iscdi=true