The randomized approximating graph algorithm for image annotation refinement problem
Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween l...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Yohan Jin Kibum Jin Khan, L. Prabhakaran, B. |
description | Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm. |
doi_str_mv | 10.1109/CVPRW.2008.4563044 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4563044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4563044</ieee_id><sourcerecordid>4563044</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1066d2db2890beb467fedea22143e348005e952ab1081b13646fd2febe8838433</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc2jEqX0B2DjH0gZjx-1l6jiJVUCoQiWla1MUqPGidwsgK8niAqxmsW59-poGLsUsBAC3PXq9fnlbYEAdqG0kaDUEZu7pRUKlUKpwB6zKQoDxVILc_KfSYenfwzshJ3_zDhAq_GMzff7dwAQYLV2csrKcks8-1R1bfyiivu-z91HbP0QU8Ob7Pst97umy3HYtrzuMh9ZQ9yn1A1jqEs8Ux0TtZQGPnbDjtoLNqn9bk_zw52x8u62XD0U66f7x9XNuogOhkKAMRVWAUe5QEGZZU0VeUShJEllATQ5jT6MsiIIaZSpK6wpkLXSKiln7Op3NhLRps-jWf7cHP4lvwGpcljr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The randomized approximating graph algorithm for image annotation refinement problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yohan Jin ; Kibum Jin ; Khan, L. ; Prabhakaran, B.</creator><creatorcontrib>Yohan Jin ; Kibum Jin ; Khan, L. ; Prabhakaran, B.</creatorcontrib><description>Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.</description><identifier>ISSN: 2160-7508</identifier><identifier>ISBN: 9781424423392</identifier><identifier>ISBN: 1424423392</identifier><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9781424423408</identifier><identifier>EISBN: 1424423406</identifier><identifier>DOI: 10.1109/CVPRW.2008.4563044</identifier><identifier>LCCN: 2008902852</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Buildings ; Data mining ; Humans ; Image retrieval ; Microcomputers ; Multimedia systems ; Noise shaping ; Polynomials ; Shape</subject><ispartof>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4563044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4563044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Kibum Jin</creatorcontrib><creatorcontrib>Khan, L.</creatorcontrib><creatorcontrib>Prabhakaran, B.</creatorcontrib><title>The randomized approximating graph algorithm for image annotation refinement problem</title><title>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</title><addtitle>CVPRW</addtitle><description>Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.</description><subject>Approximation algorithms</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Humans</subject><subject>Image retrieval</subject><subject>Microcomputers</subject><subject>Multimedia systems</subject><subject>Noise shaping</subject><subject>Polynomials</subject><subject>Shape</subject><issn>2160-7508</issn><issn>2160-7516</issn><isbn>9781424423392</isbn><isbn>1424423392</isbn><isbn>9781424423408</isbn><isbn>1424423406</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRc2jEqX0B2DjH0gZjx-1l6jiJVUCoQiWla1MUqPGidwsgK8niAqxmsW59-poGLsUsBAC3PXq9fnlbYEAdqG0kaDUEZu7pRUKlUKpwB6zKQoDxVILc_KfSYenfwzshJ3_zDhAq_GMzff7dwAQYLV2csrKcks8-1R1bfyiivu-z91HbP0QU8Ob7Pst97umy3HYtrzuMh9ZQ9yn1A1jqEs8Ux0TtZQGPnbDjtoLNqn9bk_zw52x8u62XD0U66f7x9XNuogOhkKAMRVWAUe5QEGZZU0VeUShJEllATQ5jT6MsiIIaZSpK6wpkLXSKiln7Op3NhLRps-jWf7cHP4lvwGpcljr</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Yohan Jin</creator><creator>Kibum Jin</creator><creator>Khan, L.</creator><creator>Prabhakaran, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>The randomized approximating graph algorithm for image annotation refinement problem</title><author>Yohan Jin ; Kibum Jin ; Khan, L. ; Prabhakaran, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1066d2db2890beb467fedea22143e348005e952ab1081b13646fd2febe8838433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation algorithms</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Humans</topic><topic>Image retrieval</topic><topic>Microcomputers</topic><topic>Multimedia systems</topic><topic>Noise shaping</topic><topic>Polynomials</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Kibum Jin</creatorcontrib><creatorcontrib>Khan, L.</creatorcontrib><creatorcontrib>Prabhakaran, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yohan Jin</au><au>Kibum Jin</au><au>Khan, L.</au><au>Prabhakaran, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The randomized approximating graph algorithm for image annotation refinement problem</atitle><btitle>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</btitle><stitle>CVPRW</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2160-7508</issn><eissn>2160-7516</eissn><isbn>9781424423392</isbn><isbn>1424423392</isbn><eisbn>9781424423408</eisbn><eisbn>1424423406</eisbn><abstract>Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2008.4563044</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-7508 |
ispartof | 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, p.1-8 |
issn | 2160-7508 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_4563044 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Buildings Data mining Humans Image retrieval Microcomputers Multimedia systems Noise shaping Polynomials Shape |
title | The randomized approximating graph algorithm for image annotation refinement problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20randomized%20approximating%20graph%20algorithm%20for%20image%20annotation%20refinement%20problem&rft.btitle=2008%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops&rft.au=Yohan%20Jin&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2160-7508&rft.eissn=2160-7516&rft.isbn=9781424423392&rft.isbn_list=1424423392&rft_id=info:doi/10.1109/CVPRW.2008.4563044&rft_dat=%3Cieee_6IE%3E4563044%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423408&rft.eisbn_list=1424423406&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4563044&rfr_iscdi=true |