The randomized approximating graph algorithm for image annotation refinement problem

Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yohan Jin, Kibum Jin, Khan, L., Prabhakaran, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Yohan Jin
Kibum Jin
Khan, L.
Prabhakaran, B.
description Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.
doi_str_mv 10.1109/CVPRW.2008.4563044
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4563044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4563044</ieee_id><sourcerecordid>4563044</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1066d2db2890beb467fedea22143e348005e952ab1081b13646fd2febe8838433</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc2jEqX0B2DjH0gZjx-1l6jiJVUCoQiWla1MUqPGidwsgK8niAqxmsW59-poGLsUsBAC3PXq9fnlbYEAdqG0kaDUEZu7pRUKlUKpwB6zKQoDxVILc_KfSYenfwzshJ3_zDhAq_GMzff7dwAQYLV2csrKcks8-1R1bfyiivu-z91HbP0QU8Ob7Pst97umy3HYtrzuMh9ZQ9yn1A1jqEs8Ux0TtZQGPnbDjtoLNqn9bk_zw52x8u62XD0U66f7x9XNuogOhkKAMRVWAUe5QEGZZU0VeUShJEllATQ5jT6MsiIIaZSpK6wpkLXSKiln7Op3NhLRps-jWf7cHP4lvwGpcljr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The randomized approximating graph algorithm for image annotation refinement problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yohan Jin ; Kibum Jin ; Khan, L. ; Prabhakaran, B.</creator><creatorcontrib>Yohan Jin ; Kibum Jin ; Khan, L. ; Prabhakaran, B.</creatorcontrib><description>Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.</description><identifier>ISSN: 2160-7508</identifier><identifier>ISBN: 9781424423392</identifier><identifier>ISBN: 1424423392</identifier><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9781424423408</identifier><identifier>EISBN: 1424423406</identifier><identifier>DOI: 10.1109/CVPRW.2008.4563044</identifier><identifier>LCCN: 2008902852</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Buildings ; Data mining ; Humans ; Image retrieval ; Microcomputers ; Multimedia systems ; Noise shaping ; Polynomials ; Shape</subject><ispartof>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4563044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4563044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Kibum Jin</creatorcontrib><creatorcontrib>Khan, L.</creatorcontrib><creatorcontrib>Prabhakaran, B.</creatorcontrib><title>The randomized approximating graph algorithm for image annotation refinement problem</title><title>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</title><addtitle>CVPRW</addtitle><description>Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.</description><subject>Approximation algorithms</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Humans</subject><subject>Image retrieval</subject><subject>Microcomputers</subject><subject>Multimedia systems</subject><subject>Noise shaping</subject><subject>Polynomials</subject><subject>Shape</subject><issn>2160-7508</issn><issn>2160-7516</issn><isbn>9781424423392</isbn><isbn>1424423392</isbn><isbn>9781424423408</isbn><isbn>1424423406</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRc2jEqX0B2DjH0gZjx-1l6jiJVUCoQiWla1MUqPGidwsgK8niAqxmsW59-poGLsUsBAC3PXq9fnlbYEAdqG0kaDUEZu7pRUKlUKpwB6zKQoDxVILc_KfSYenfwzshJ3_zDhAq_GMzff7dwAQYLV2csrKcks8-1R1bfyiivu-z91HbP0QU8Ob7Pst97umy3HYtrzuMh9ZQ9yn1A1jqEs8Ux0TtZQGPnbDjtoLNqn9bk_zw52x8u62XD0U66f7x9XNuogOhkKAMRVWAUe5QEGZZU0VeUShJEllATQ5jT6MsiIIaZSpK6wpkLXSKiln7Op3NhLRps-jWf7cHP4lvwGpcljr</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Yohan Jin</creator><creator>Kibum Jin</creator><creator>Khan, L.</creator><creator>Prabhakaran, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>The randomized approximating graph algorithm for image annotation refinement problem</title><author>Yohan Jin ; Kibum Jin ; Khan, L. ; Prabhakaran, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1066d2db2890beb467fedea22143e348005e952ab1081b13646fd2febe8838433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation algorithms</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Humans</topic><topic>Image retrieval</topic><topic>Microcomputers</topic><topic>Multimedia systems</topic><topic>Noise shaping</topic><topic>Polynomials</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Kibum Jin</creatorcontrib><creatorcontrib>Khan, L.</creatorcontrib><creatorcontrib>Prabhakaran, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yohan Jin</au><au>Kibum Jin</au><au>Khan, L.</au><au>Prabhakaran, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The randomized approximating graph algorithm for image annotation refinement problem</atitle><btitle>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</btitle><stitle>CVPRW</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2160-7508</issn><eissn>2160-7516</eissn><isbn>9781424423392</isbn><isbn>1424423392</isbn><eisbn>9781424423408</eisbn><eisbn>1424423406</eisbn><abstract>Recently, images on the Web and personal computers are prevalent around the humanpsilas life. To retrieve effectively those images, there are many AIA (Automatic Image Annotation) algorithms. However, it still suffers from low-level accuracy since it couldnpsilat overcome the semantic-gap be tween low-level features (dasiacolorpsila,dasiatexturepsila and dasiashapepsila) and high-level semantic meanings (e.g., dasiaskypsila,dasiabeachpsila). Namely, AIA techniques annotates images with many noisy key words. Refinement process has been appeared in these days and it tries to remove noisy keywords by using Knowledge-base and boosting candidate keywords. Because of limitless of candidate keywords and the incorrectness of web-image textual descriptions, this is the time we need to have deterministic polynomial time algorithm. We show that finding optimal solution for removing noisy keywords in the graph is NP-Complete problem and propose new methodology for KBIAR (Knowledge Based Image Annotation Refinement) using the randomized approximation graph algorithm as the general deterministic polynomial time algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2008.4563044</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-7508
ispartof 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, p.1-8
issn 2160-7508
2160-7516
language eng
recordid cdi_ieee_primary_4563044
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Buildings
Data mining
Humans
Image retrieval
Microcomputers
Multimedia systems
Noise shaping
Polynomials
Shape
title The randomized approximating graph algorithm for image annotation refinement problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20randomized%20approximating%20graph%20algorithm%20for%20image%20annotation%20refinement%20problem&rft.btitle=2008%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops&rft.au=Yohan%20Jin&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2160-7508&rft.eissn=2160-7516&rft.isbn=9781424423392&rft.isbn_list=1424423392&rft_id=info:doi/10.1109/CVPRW.2008.4563044&rft_dat=%3Cieee_6IE%3E4563044%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423408&rft.eisbn_list=1424423406&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4563044&rfr_iscdi=true