Hierarchical Stereo with Thin Structures and Transparency

Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sizintsev, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 97
container_title
container_volume
creator Sizintsev, M.
description Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.
doi_str_mv 10.1109/CRV.2008.8
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4562099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4562099</ieee_id><sourcerecordid>4562099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-36cca1e85622b2b9428a6ff96fc5dd74bf82cfb69f5f984557bc263b54417ac73</originalsourceid><addsrcrecordid>eNotjE9LwzAcQAMy0M1dvHrpF2jNv1-S31GKOmEgaPU6kjShkVlH0iH79lbcuzx4h0fIDaMNYxTv2tePhlNqGnNBllQrBMFA4IIs_ypyBkAvybqUTzojgYI2VwQ3KWSb_ZC83VdvU8jhu_pJ01B1QxrnkI9-OuZQKjv2VZftWA42h9Gfrski2n0J67NX5P3xoWs39fbl6bm939aJaZhqoby3LBhQnDvuUHJjVYyoooe-19JFw310CiNENBJAO8-VcCAl09ZrsSK3_98UQtgdcvqy-bST848iil9z60Yn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical Stereo with Thin Structures and Transparency</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sizintsev, M.</creator><creatorcontrib>Sizintsev, M.</creatorcontrib><description>Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.</description><identifier>ISBN: 0769531539</identifier><identifier>ISBN: 9780769531533</identifier><identifier>DOI: 10.1109/CRV.2008.8</identifier><identifier>LCCN: 2008921550</identifier><language>eng</language><publisher>IEEE</publisher><subject>coarse-to-fine ; Computer vision ; Energy resolution ; Frequency ; Image resolution ; Laplace equations ; Motion estimation ; multi-resolution ; Multiresolution analysis ; Robot vision systems ; Spatial resolution ; stereo ; Stereo vision ; thin structures ; transparency</subject><ispartof>2008 Canadian Conference on Computer and Robot Vision, 2008, p.97-104</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4562099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4562099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sizintsev, M.</creatorcontrib><title>Hierarchical Stereo with Thin Structures and Transparency</title><title>2008 Canadian Conference on Computer and Robot Vision</title><addtitle>CRV</addtitle><description>Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.</description><subject>coarse-to-fine</subject><subject>Computer vision</subject><subject>Energy resolution</subject><subject>Frequency</subject><subject>Image resolution</subject><subject>Laplace equations</subject><subject>Motion estimation</subject><subject>multi-resolution</subject><subject>Multiresolution analysis</subject><subject>Robot vision systems</subject><subject>Spatial resolution</subject><subject>stereo</subject><subject>Stereo vision</subject><subject>thin structures</subject><subject>transparency</subject><isbn>0769531539</isbn><isbn>9780769531533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9LwzAcQAMy0M1dvHrpF2jNv1-S31GKOmEgaPU6kjShkVlH0iH79lbcuzx4h0fIDaMNYxTv2tePhlNqGnNBllQrBMFA4IIs_ypyBkAvybqUTzojgYI2VwQ3KWSb_ZC83VdvU8jhu_pJ01B1QxrnkI9-OuZQKjv2VZftWA42h9Gfrski2n0J67NX5P3xoWs39fbl6bm939aJaZhqoby3LBhQnDvuUHJjVYyoooe-19JFw310CiNENBJAO8-VcCAl09ZrsSK3_98UQtgdcvqy-bST848iil9z60Yn</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Sizintsev, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Hierarchical Stereo with Thin Structures and Transparency</title><author>Sizintsev, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-36cca1e85622b2b9428a6ff96fc5dd74bf82cfb69f5f984557bc263b54417ac73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>coarse-to-fine</topic><topic>Computer vision</topic><topic>Energy resolution</topic><topic>Frequency</topic><topic>Image resolution</topic><topic>Laplace equations</topic><topic>Motion estimation</topic><topic>multi-resolution</topic><topic>Multiresolution analysis</topic><topic>Robot vision systems</topic><topic>Spatial resolution</topic><topic>stereo</topic><topic>Stereo vision</topic><topic>thin structures</topic><topic>transparency</topic><toplevel>online_resources</toplevel><creatorcontrib>Sizintsev, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sizintsev, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical Stereo with Thin Structures and Transparency</atitle><btitle>2008 Canadian Conference on Computer and Robot Vision</btitle><stitle>CRV</stitle><date>2008-05</date><risdate>2008</risdate><spage>97</spage><epage>104</epage><pages>97-104</pages><isbn>0769531539</isbn><isbn>9780769531533</isbn><abstract>Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.</abstract><pub>IEEE</pub><doi>10.1109/CRV.2008.8</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769531539
ispartof 2008 Canadian Conference on Computer and Robot Vision, 2008, p.97-104
issn
language eng
recordid cdi_ieee_primary_4562099
source IEEE Electronic Library (IEL) Conference Proceedings
subjects coarse-to-fine
Computer vision
Energy resolution
Frequency
Image resolution
Laplace equations
Motion estimation
multi-resolution
Multiresolution analysis
Robot vision systems
Spatial resolution
stereo
Stereo vision
thin structures
transparency
title Hierarchical Stereo with Thin Structures and Transparency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20Stereo%20with%20Thin%20Structures%20and%20Transparency&rft.btitle=2008%20Canadian%20Conference%20on%20Computer%20and%20Robot%20Vision&rft.au=Sizintsev,%20M.&rft.date=2008-05&rft.spage=97&rft.epage=104&rft.pages=97-104&rft.isbn=0769531539&rft.isbn_list=9780769531533&rft_id=info:doi/10.1109/CRV.2008.8&rft_dat=%3Cieee_6IE%3E4562099%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4562099&rfr_iscdi=true