Hierarchical Stereo with Thin Structures and Transparency
Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | |
container_start_page | 97 |
container_title | |
container_volume | |
creator | Sizintsev, M. |
description | Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques. |
doi_str_mv | 10.1109/CRV.2008.8 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4562099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4562099</ieee_id><sourcerecordid>4562099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-36cca1e85622b2b9428a6ff96fc5dd74bf82cfb69f5f984557bc263b54417ac73</originalsourceid><addsrcrecordid>eNotjE9LwzAcQAMy0M1dvHrpF2jNv1-S31GKOmEgaPU6kjShkVlH0iH79lbcuzx4h0fIDaMNYxTv2tePhlNqGnNBllQrBMFA4IIs_ypyBkAvybqUTzojgYI2VwQ3KWSb_ZC83VdvU8jhu_pJ01B1QxrnkI9-OuZQKjv2VZftWA42h9Gfrski2n0J67NX5P3xoWs39fbl6bm939aJaZhqoby3LBhQnDvuUHJjVYyoooe-19JFw310CiNENBJAO8-VcCAl09ZrsSK3_98UQtgdcvqy-bST848iil9z60Yn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical Stereo with Thin Structures and Transparency</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sizintsev, M.</creator><creatorcontrib>Sizintsev, M.</creatorcontrib><description>Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.</description><identifier>ISBN: 0769531539</identifier><identifier>ISBN: 9780769531533</identifier><identifier>DOI: 10.1109/CRV.2008.8</identifier><identifier>LCCN: 2008921550</identifier><language>eng</language><publisher>IEEE</publisher><subject>coarse-to-fine ; Computer vision ; Energy resolution ; Frequency ; Image resolution ; Laplace equations ; Motion estimation ; multi-resolution ; Multiresolution analysis ; Robot vision systems ; Spatial resolution ; stereo ; Stereo vision ; thin structures ; transparency</subject><ispartof>2008 Canadian Conference on Computer and Robot Vision, 2008, p.97-104</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4562099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4562099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sizintsev, M.</creatorcontrib><title>Hierarchical Stereo with Thin Structures and Transparency</title><title>2008 Canadian Conference on Computer and Robot Vision</title><addtitle>CRV</addtitle><description>Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.</description><subject>coarse-to-fine</subject><subject>Computer vision</subject><subject>Energy resolution</subject><subject>Frequency</subject><subject>Image resolution</subject><subject>Laplace equations</subject><subject>Motion estimation</subject><subject>multi-resolution</subject><subject>Multiresolution analysis</subject><subject>Robot vision systems</subject><subject>Spatial resolution</subject><subject>stereo</subject><subject>Stereo vision</subject><subject>thin structures</subject><subject>transparency</subject><isbn>0769531539</isbn><isbn>9780769531533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9LwzAcQAMy0M1dvHrpF2jNv1-S31GKOmEgaPU6kjShkVlH0iH79lbcuzx4h0fIDaMNYxTv2tePhlNqGnNBllQrBMFA4IIs_ypyBkAvybqUTzojgYI2VwQ3KWSb_ZC83VdvU8jhu_pJ01B1QxrnkI9-OuZQKjv2VZftWA42h9Gfrski2n0J67NX5P3xoWs39fbl6bm939aJaZhqoby3LBhQnDvuUHJjVYyoooe-19JFw310CiNENBJAO8-VcCAl09ZrsSK3_98UQtgdcvqy-bST848iil9z60Yn</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Sizintsev, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Hierarchical Stereo with Thin Structures and Transparency</title><author>Sizintsev, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-36cca1e85622b2b9428a6ff96fc5dd74bf82cfb69f5f984557bc263b54417ac73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>coarse-to-fine</topic><topic>Computer vision</topic><topic>Energy resolution</topic><topic>Frequency</topic><topic>Image resolution</topic><topic>Laplace equations</topic><topic>Motion estimation</topic><topic>multi-resolution</topic><topic>Multiresolution analysis</topic><topic>Robot vision systems</topic><topic>Spatial resolution</topic><topic>stereo</topic><topic>Stereo vision</topic><topic>thin structures</topic><topic>transparency</topic><toplevel>online_resources</toplevel><creatorcontrib>Sizintsev, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sizintsev, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical Stereo with Thin Structures and Transparency</atitle><btitle>2008 Canadian Conference on Computer and Robot Vision</btitle><stitle>CRV</stitle><date>2008-05</date><risdate>2008</risdate><spage>97</spage><epage>104</epage><pages>97-104</pages><isbn>0769531539</isbn><isbn>9780769531533</isbn><abstract>Dense stereo algorithms rely on matching over a range of disparities. To speed up the search and reduce match ambiguity, processing can be embedded in the hierarchical, or coarse-to-fine (CTF), framework using image pyramids. However, this technique is limited when resolving thin structures, as they are poorly represented at coarser scales. In this paper we exploit alternative pyramid and search space techniques. We propose matching with the Magnitude-extended Laplacian Pyramid (MeLP) - a generalization of the Laplacian pyramid that explicitly encodes the energy magnitude component of the band-passed images. In essence, MeLP effectively encodes fine scale details in low resolution images, which allows for accurate recovery of thin structures during CTF processing. Furthermore, transparencies can be resolved for common cases when spatial frequency structure is locally different for each layer. Algorithmic instantiations for local block matching and global Graph Cuts formulations are presented. Extensive experimental evaluation demonstrates the benefits of the proposed techniques.</abstract><pub>IEEE</pub><doi>10.1109/CRV.2008.8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769531539 |
ispartof | 2008 Canadian Conference on Computer and Robot Vision, 2008, p.97-104 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4562099 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | coarse-to-fine Computer vision Energy resolution Frequency Image resolution Laplace equations Motion estimation multi-resolution Multiresolution analysis Robot vision systems Spatial resolution stereo Stereo vision thin structures transparency |
title | Hierarchical Stereo with Thin Structures and Transparency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20Stereo%20with%20Thin%20Structures%20and%20Transparency&rft.btitle=2008%20Canadian%20Conference%20on%20Computer%20and%20Robot%20Vision&rft.au=Sizintsev,%20M.&rft.date=2008-05&rft.spage=97&rft.epage=104&rft.pages=97-104&rft.isbn=0769531539&rft.isbn_list=9780769531533&rft_id=info:doi/10.1109/CRV.2008.8&rft_dat=%3Cieee_6IE%3E4562099%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4562099&rfr_iscdi=true |