A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay
In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | |
container_start_page | 524 |
container_title | |
container_volume | |
creator | Abbi, R. El-Darzi, E. Vasilakis, C. Millard, P. |
description | In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns. |
doi_str_mv | 10.1109/CBMS.2008.69 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4562050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4562050</ieee_id><sourcerecordid>4562050</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b42c2df1c6982d7ee20848f539cef4f17038c8f13f490dc7d9a4e5bf771864453</originalsourceid><addsrcrecordid>eNotjM1KAzEYAAMqWGtv3rzkBbZ--U-Oa9FWaFGonkuaTdpI3SxJCvbtrehpYAYGoTsCU0LAPMweV-spBdBTaS7QxCgNShrBiBTyEo0ISNYoQsU1uinlEwC4ImyEbIvn9lhKtD1exe96zB6vUucPuB2GnKzb45rwPKfjEPsdfrM1-r4W3DqXcverzrnufcx4kcoQqz3gpe93dY9TwOtqT7foKthD8ZN_jtHH89P7bNEsX-cvs3bZRKJEbbacOtoF4qTRtFPeU9BcB8GM84EHooBppwNhgRvonOqM5V5sg1JES84FG6P7v2_03m-GHL9sPm24kBQEsB8jtFPZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abbi, R. ; El-Darzi, E. ; Vasilakis, C. ; Millard, P.</creator><creatorcontrib>Abbi, R. ; El-Darzi, E. ; Vasilakis, C. ; Millard, P.</creatorcontrib><description>In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780769531656</identifier><identifier>ISBN: 0769531652</identifier><identifier>DOI: 10.1109/CBMS.2008.69</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Educational institutions ; Equations ; Guassian mixture model ; health care ; Hospitals ; length of stay ; Medical treatment ; Probability distribution ; Proposals ; Statistical distributions ; Statistics</subject><ispartof>2008 21st IEEE International Symposium on Computer-Based Medical Systems, 2008, p.524-529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4562050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4562050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbi, R.</creatorcontrib><creatorcontrib>El-Darzi, E.</creatorcontrib><creatorcontrib>Vasilakis, C.</creatorcontrib><creatorcontrib>Millard, P.</creatorcontrib><title>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</title><title>2008 21st IEEE International Symposium on Computer-Based Medical Systems</title><addtitle>CBMS</addtitle><description>In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.</description><subject>Computer science</subject><subject>Educational institutions</subject><subject>Equations</subject><subject>Guassian mixture model</subject><subject>health care</subject><subject>Hospitals</subject><subject>length of stay</subject><subject>Medical treatment</subject><subject>Probability distribution</subject><subject>Proposals</subject><subject>Statistical distributions</subject><subject>Statistics</subject><issn>1063-7125</issn><isbn>9780769531656</isbn><isbn>0769531652</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KAzEYAAMqWGtv3rzkBbZ--U-Oa9FWaFGonkuaTdpI3SxJCvbtrehpYAYGoTsCU0LAPMweV-spBdBTaS7QxCgNShrBiBTyEo0ISNYoQsU1uinlEwC4ImyEbIvn9lhKtD1exe96zB6vUucPuB2GnKzb45rwPKfjEPsdfrM1-r4W3DqXcverzrnufcx4kcoQqz3gpe93dY9TwOtqT7foKthD8ZN_jtHH89P7bNEsX-cvs3bZRKJEbbacOtoF4qTRtFPeU9BcB8GM84EHooBppwNhgRvonOqM5V5sg1JES84FG6P7v2_03m-GHL9sPm24kBQEsB8jtFPZ</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Abbi, R.</creator><creator>El-Darzi, E.</creator><creator>Vasilakis, C.</creator><creator>Millard, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</title><author>Abbi, R. ; El-Darzi, E. ; Vasilakis, C. ; Millard, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b42c2df1c6982d7ee20848f539cef4f17038c8f13f490dc7d9a4e5bf771864453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>Educational institutions</topic><topic>Equations</topic><topic>Guassian mixture model</topic><topic>health care</topic><topic>Hospitals</topic><topic>length of stay</topic><topic>Medical treatment</topic><topic>Probability distribution</topic><topic>Proposals</topic><topic>Statistical distributions</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbi, R.</creatorcontrib><creatorcontrib>El-Darzi, E.</creatorcontrib><creatorcontrib>Vasilakis, C.</creatorcontrib><creatorcontrib>Millard, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbi, R.</au><au>El-Darzi, E.</au><au>Vasilakis, C.</au><au>Millard, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</atitle><btitle>2008 21st IEEE International Symposium on Computer-Based Medical Systems</btitle><stitle>CBMS</stitle><date>2008-06</date><risdate>2008</risdate><spage>524</spage><epage>529</epage><pages>524-529</pages><issn>1063-7125</issn><isbn>9780769531656</isbn><isbn>0769531652</isbn><abstract>In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2008.69</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-7125 |
ispartof | 2008 21st IEEE International Symposium on Computer-Based Medical Systems, 2008, p.524-529 |
issn | 1063-7125 |
language | eng |
recordid | cdi_ieee_primary_4562050 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Educational institutions Equations Guassian mixture model health care Hospitals length of stay Medical treatment Probability distribution Proposals Statistical distributions Statistics |
title | A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Gaussian%20Mixture%20Model%20Approach%20to%20Grouping%20Patients%20According%20to%20their%20Hospital%20Length%20of%20Stay&rft.btitle=2008%2021st%20IEEE%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems&rft.au=Abbi,%20R.&rft.date=2008-06&rft.spage=524&rft.epage=529&rft.pages=524-529&rft.issn=1063-7125&rft.isbn=9780769531656&rft.isbn_list=0769531652&rft_id=info:doi/10.1109/CBMS.2008.69&rft_dat=%3Cieee_6IE%3E4562050%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4562050&rfr_iscdi=true |