A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay

In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abbi, R., El-Darzi, E., Vasilakis, C., Millard, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue
container_start_page 524
container_title
container_volume
creator Abbi, R.
El-Darzi, E.
Vasilakis, C.
Millard, P.
description In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.
doi_str_mv 10.1109/CBMS.2008.69
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4562050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4562050</ieee_id><sourcerecordid>4562050</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b42c2df1c6982d7ee20848f539cef4f17038c8f13f490dc7d9a4e5bf771864453</originalsourceid><addsrcrecordid>eNotjM1KAzEYAAMqWGtv3rzkBbZ--U-Oa9FWaFGonkuaTdpI3SxJCvbtrehpYAYGoTsCU0LAPMweV-spBdBTaS7QxCgNShrBiBTyEo0ISNYoQsU1uinlEwC4ImyEbIvn9lhKtD1exe96zB6vUucPuB2GnKzb45rwPKfjEPsdfrM1-r4W3DqXcverzrnufcx4kcoQqz3gpe93dY9TwOtqT7foKthD8ZN_jtHH89P7bNEsX-cvs3bZRKJEbbacOtoF4qTRtFPeU9BcB8GM84EHooBppwNhgRvonOqM5V5sg1JES84FG6P7v2_03m-GHL9sPm24kBQEsB8jtFPZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abbi, R. ; El-Darzi, E. ; Vasilakis, C. ; Millard, P.</creator><creatorcontrib>Abbi, R. ; El-Darzi, E. ; Vasilakis, C. ; Millard, P.</creatorcontrib><description>In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780769531656</identifier><identifier>ISBN: 0769531652</identifier><identifier>DOI: 10.1109/CBMS.2008.69</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Educational institutions ; Equations ; Guassian mixture model ; health care ; Hospitals ; length of stay ; Medical treatment ; Probability distribution ; Proposals ; Statistical distributions ; Statistics</subject><ispartof>2008 21st IEEE International Symposium on Computer-Based Medical Systems, 2008, p.524-529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4562050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4562050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbi, R.</creatorcontrib><creatorcontrib>El-Darzi, E.</creatorcontrib><creatorcontrib>Vasilakis, C.</creatorcontrib><creatorcontrib>Millard, P.</creatorcontrib><title>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</title><title>2008 21st IEEE International Symposium on Computer-Based Medical Systems</title><addtitle>CBMS</addtitle><description>In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.</description><subject>Computer science</subject><subject>Educational institutions</subject><subject>Equations</subject><subject>Guassian mixture model</subject><subject>health care</subject><subject>Hospitals</subject><subject>length of stay</subject><subject>Medical treatment</subject><subject>Probability distribution</subject><subject>Proposals</subject><subject>Statistical distributions</subject><subject>Statistics</subject><issn>1063-7125</issn><isbn>9780769531656</isbn><isbn>0769531652</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KAzEYAAMqWGtv3rzkBbZ--U-Oa9FWaFGonkuaTdpI3SxJCvbtrehpYAYGoTsCU0LAPMweV-spBdBTaS7QxCgNShrBiBTyEo0ISNYoQsU1uinlEwC4ImyEbIvn9lhKtD1exe96zB6vUucPuB2GnKzb45rwPKfjEPsdfrM1-r4W3DqXcverzrnufcx4kcoQqz3gpe93dY9TwOtqT7foKthD8ZN_jtHH89P7bNEsX-cvs3bZRKJEbbacOtoF4qTRtFPeU9BcB8GM84EHooBppwNhgRvonOqM5V5sg1JES84FG6P7v2_03m-GHL9sPm24kBQEsB8jtFPZ</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Abbi, R.</creator><creator>El-Darzi, E.</creator><creator>Vasilakis, C.</creator><creator>Millard, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</title><author>Abbi, R. ; El-Darzi, E. ; Vasilakis, C. ; Millard, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b42c2df1c6982d7ee20848f539cef4f17038c8f13f490dc7d9a4e5bf771864453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>Educational institutions</topic><topic>Equations</topic><topic>Guassian mixture model</topic><topic>health care</topic><topic>Hospitals</topic><topic>length of stay</topic><topic>Medical treatment</topic><topic>Probability distribution</topic><topic>Proposals</topic><topic>Statistical distributions</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbi, R.</creatorcontrib><creatorcontrib>El-Darzi, E.</creatorcontrib><creatorcontrib>Vasilakis, C.</creatorcontrib><creatorcontrib>Millard, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbi, R.</au><au>El-Darzi, E.</au><au>Vasilakis, C.</au><au>Millard, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay</atitle><btitle>2008 21st IEEE International Symposium on Computer-Based Medical Systems</btitle><stitle>CBMS</stitle><date>2008-06</date><risdate>2008</risdate><spage>524</spage><epage>529</epage><pages>524-529</pages><issn>1063-7125</issn><isbn>9780769531656</isbn><isbn>0769531652</isbn><abstract>In this paper we propose a new approach capable of determining clinically meaningful patient groups from a given dataset of patient spells. We hypothesise that the skewed distribution of length of stay (LOS) observations, often modelled in the past using mixed exponential equations, is composed of several homogeneous groups that together form the overall skewed LOS distribution. We show how the Gaussian mixture model (GMM) can be used to approximate each group, and discuss each group's possible clinical interpretation and statistical significance. In addition, we show how the health professional can use the outcome of the grouping approach to answer several questions about individual patients and their likely LOS in hospital. Our results demonstrate that the grouping of stroke patient spells estimated by the GMM resembles the clinical experience of stroke patients and the different stroke recovery patterns.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2008.69</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-7125
ispartof 2008 21st IEEE International Symposium on Computer-Based Medical Systems, 2008, p.524-529
issn 1063-7125
language eng
recordid cdi_ieee_primary_4562050
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Educational institutions
Equations
Guassian mixture model
health care
Hospitals
length of stay
Medical treatment
Probability distribution
Proposals
Statistical distributions
Statistics
title A Gaussian Mixture Model Approach to Grouping Patients According to their Hospital Length of Stay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Gaussian%20Mixture%20Model%20Approach%20to%20Grouping%20Patients%20According%20to%20their%20Hospital%20Length%20of%20Stay&rft.btitle=2008%2021st%20IEEE%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems&rft.au=Abbi,%20R.&rft.date=2008-06&rft.spage=524&rft.epage=529&rft.pages=524-529&rft.issn=1063-7125&rft.isbn=9780769531656&rft.isbn_list=0769531652&rft_id=info:doi/10.1109/CBMS.2008.69&rft_dat=%3Cieee_6IE%3E4562050%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4562050&rfr_iscdi=true