Development of a Reference Platform for Generic Audio Classification

Detection of key sounds, such as applause, laugh, music, environmental noise, etc., is one of the challenges in intelligent management of multimedia information and content understanding. In this paper, we report progress in development of a reference content-based audio classification algorithm tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jarina, R., Paralic, M., Kuba, M., Olajec, J., Lukac, A., Dzurek, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue
container_start_page 239
container_title
container_volume
creator Jarina, R.
Paralic, M.
Kuba, M.
Olajec, J.
Lukac, A.
Dzurek, M.
description Detection of key sounds, such as applause, laugh, music, environmental noise, etc., is one of the challenges in intelligent management of multimedia information and content understanding. In this paper, we report progress in development of a reference content-based audio classification algorithm that is based on a conventional and widely accepted approach, namely signal parameterization by MFCC followed by GMM classification. Our developed labeled audio database and the conventional classification model should serve as a reference platform for an evaluation of novel, alternative or more advanced methods in audio content analysis.
doi_str_mv 10.1109/WIAMIS.2008.39
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4556928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4556928</ieee_id><sourcerecordid>4556928</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-68a7480b2da9fb673247520c7c02f6abcb57fe4a32659ff7a530d7404cdace423</originalsourceid><addsrcrecordid>eNo1jM1Kw0AYRUe0YFu7deNmXiDxm_-ZZWi1BiqKFnRXJpNvYCQ_JYmCb29B3dzDgcMl5JpBzhi427eyeCxfcw5gc-HOyAKMdkowAe_n_yKk5BdkzpmymbJGzMji1BvHgFu4JKtx_AAAwax1gs_JZoNf2PTHFruJ9pF6-oIRB-wC0ufGT7EfWnoausUOhxRo8Vmnnq4bP44ppuCn1HdXZBZ9M-Lqj0uyv7_brx-y3dO2XBe7LDmYMm29kRYqXnsXK20El0ZxCCYAj9pXoVImovSCa-ViNF4JqI0EGWofUHKxJDe_twkRD8chtX74PkiltONW_AAboE6E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of a Reference Platform for Generic Audio Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jarina, R. ; Paralic, M. ; Kuba, M. ; Olajec, J. ; Lukac, A. ; Dzurek, M.</creator><creatorcontrib>Jarina, R. ; Paralic, M. ; Kuba, M. ; Olajec, J. ; Lukac, A. ; Dzurek, M.</creatorcontrib><description>Detection of key sounds, such as applause, laugh, music, environmental noise, etc., is one of the challenges in intelligent management of multimedia information and content understanding. In this paper, we report progress in development of a reference content-based audio classification algorithm that is based on a conventional and widely accepted approach, namely signal parameterization by MFCC followed by GMM classification. Our developed labeled audio database and the conventional classification model should serve as a reference platform for an evaluation of novel, alternative or more advanced methods in audio content analysis.</description><identifier>ISSN: 2158-5873</identifier><identifier>ISBN: 0769533442</identifier><identifier>ISBN: 9780769533445</identifier><identifier>EISBN: 076953130X</identifier><identifier>EISBN: 9780769531304</identifier><identifier>DOI: 10.1109/WIAMIS.2008.39</identifier><identifier>LCCN: 2007910280</identifier><language>eng</language><publisher>IEEE</publisher><subject>audio ; Audio databases ; Automatic speech recognition ; Classification algorithms ; content analysis ; Content management ; Feature extraction ; GMM ; Indexing ; Information management ; key sounds ; Mel frequency cepstral coefficient ; MFCC ; multimedia ; Multimedia databases ; Music ; reference platform ; semantic</subject><ispartof>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, p.239-242</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4556928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4556928$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jarina, R.</creatorcontrib><creatorcontrib>Paralic, M.</creatorcontrib><creatorcontrib>Kuba, M.</creatorcontrib><creatorcontrib>Olajec, J.</creatorcontrib><creatorcontrib>Lukac, A.</creatorcontrib><creatorcontrib>Dzurek, M.</creatorcontrib><title>Development of a Reference Platform for Generic Audio Classification</title><title>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services</title><addtitle>WIAMIS</addtitle><description>Detection of key sounds, such as applause, laugh, music, environmental noise, etc., is one of the challenges in intelligent management of multimedia information and content understanding. In this paper, we report progress in development of a reference content-based audio classification algorithm that is based on a conventional and widely accepted approach, namely signal parameterization by MFCC followed by GMM classification. Our developed labeled audio database and the conventional classification model should serve as a reference platform for an evaluation of novel, alternative or more advanced methods in audio content analysis.</description><subject>audio</subject><subject>Audio databases</subject><subject>Automatic speech recognition</subject><subject>Classification algorithms</subject><subject>content analysis</subject><subject>Content management</subject><subject>Feature extraction</subject><subject>GMM</subject><subject>Indexing</subject><subject>Information management</subject><subject>key sounds</subject><subject>Mel frequency cepstral coefficient</subject><subject>MFCC</subject><subject>multimedia</subject><subject>Multimedia databases</subject><subject>Music</subject><subject>reference platform</subject><subject>semantic</subject><issn>2158-5873</issn><isbn>0769533442</isbn><isbn>9780769533445</isbn><isbn>076953130X</isbn><isbn>9780769531304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jM1Kw0AYRUe0YFu7deNmXiDxm_-ZZWi1BiqKFnRXJpNvYCQ_JYmCb29B3dzDgcMl5JpBzhi427eyeCxfcw5gc-HOyAKMdkowAe_n_yKk5BdkzpmymbJGzMji1BvHgFu4JKtx_AAAwax1gs_JZoNf2PTHFruJ9pF6-oIRB-wC0ufGT7EfWnoausUOhxRo8Vmnnq4bP44ppuCn1HdXZBZ9M-Lqj0uyv7_brx-y3dO2XBe7LDmYMm29kRYqXnsXK20El0ZxCCYAj9pXoVImovSCa-ViNF4JqI0EGWofUHKxJDe_twkRD8chtX74PkiltONW_AAboE6E</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Jarina, R.</creator><creator>Paralic, M.</creator><creator>Kuba, M.</creator><creator>Olajec, J.</creator><creator>Lukac, A.</creator><creator>Dzurek, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Development of a Reference Platform for Generic Audio Classification</title><author>Jarina, R. ; Paralic, M. ; Kuba, M. ; Olajec, J. ; Lukac, A. ; Dzurek, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-68a7480b2da9fb673247520c7c02f6abcb57fe4a32659ff7a530d7404cdace423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>audio</topic><topic>Audio databases</topic><topic>Automatic speech recognition</topic><topic>Classification algorithms</topic><topic>content analysis</topic><topic>Content management</topic><topic>Feature extraction</topic><topic>GMM</topic><topic>Indexing</topic><topic>Information management</topic><topic>key sounds</topic><topic>Mel frequency cepstral coefficient</topic><topic>MFCC</topic><topic>multimedia</topic><topic>Multimedia databases</topic><topic>Music</topic><topic>reference platform</topic><topic>semantic</topic><toplevel>online_resources</toplevel><creatorcontrib>Jarina, R.</creatorcontrib><creatorcontrib>Paralic, M.</creatorcontrib><creatorcontrib>Kuba, M.</creatorcontrib><creatorcontrib>Olajec, J.</creatorcontrib><creatorcontrib>Lukac, A.</creatorcontrib><creatorcontrib>Dzurek, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jarina, R.</au><au>Paralic, M.</au><au>Kuba, M.</au><au>Olajec, J.</au><au>Lukac, A.</au><au>Dzurek, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of a Reference Platform for Generic Audio Classification</atitle><btitle>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services</btitle><stitle>WIAMIS</stitle><date>2008-05</date><risdate>2008</risdate><spage>239</spage><epage>242</epage><pages>239-242</pages><issn>2158-5873</issn><isbn>0769533442</isbn><isbn>9780769533445</isbn><eisbn>076953130X</eisbn><eisbn>9780769531304</eisbn><abstract>Detection of key sounds, such as applause, laugh, music, environmental noise, etc., is one of the challenges in intelligent management of multimedia information and content understanding. In this paper, we report progress in development of a reference content-based audio classification algorithm that is based on a conventional and widely accepted approach, namely signal parameterization by MFCC followed by GMM classification. Our developed labeled audio database and the conventional classification model should serve as a reference platform for an evaluation of novel, alternative or more advanced methods in audio content analysis.</abstract><pub>IEEE</pub><doi>10.1109/WIAMIS.2008.39</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-5873
ispartof 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, p.239-242
issn 2158-5873
language eng
recordid cdi_ieee_primary_4556928
source IEEE Electronic Library (IEL) Conference Proceedings
subjects audio
Audio databases
Automatic speech recognition
Classification algorithms
content analysis
Content management
Feature extraction
GMM
Indexing
Information management
key sounds
Mel frequency cepstral coefficient
MFCC
multimedia
Multimedia databases
Music
reference platform
semantic
title Development of a Reference Platform for Generic Audio Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20a%20Reference%20Platform%20for%20Generic%20Audio%20Classification&rft.btitle=2008%20Ninth%20International%20Workshop%20on%20Image%20Analysis%20for%20Multimedia%20Interactive%20Services&rft.au=Jarina,%20R.&rft.date=2008-05&rft.spage=239&rft.epage=242&rft.pages=239-242&rft.issn=2158-5873&rft.isbn=0769533442&rft.isbn_list=9780769533445&rft_id=info:doi/10.1109/WIAMIS.2008.39&rft_dat=%3Cieee_6IE%3E4556928%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=076953130X&rft.eisbn_list=9780769531304&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4556928&rfr_iscdi=true