Identifying Different Settings in a Visual Diary

We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Blighe, M., O'Connor, N.E., Rehatschek, H., Kienast, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 24
container_title
container_volume
creator Blighe, M.
O'Connor, N.E.
Rehatschek, H.
Kienast, G.
description We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.
doi_str_mv 10.1109/WIAMIS.2008.17
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4556873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4556873</ieee_id><sourcerecordid>4556873</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1f3da59faf035746f4816ced239c13b94604cfdd6a4431538d88178749f7257e3</originalsourceid><addsrcrecordid>eNo1T8tKAzEUjWjBtnbrxs38wNR7c_O4WZb6Gqi4aFF3JU4SidRBZsZF_96AujqcB-dwhLhEWCKCu35pVo_NdikBeIn2RMzAGqcJCV5P_wkpJc_EVKLmWrOliZiVvHUIkuFcLIbhAwAImR3JqYAmxG7M6Zi79-ompxT7wqttHMeiDFXuKl895-HbH4rt--OFmCR_GOLiD-did3e7Wz_Um6f7Zr3a1NnBWGOi4LVLPgFpq0xSjKaNQZJrkd6cMqDaFILxShFq4sCMlq1yyUptI83F1W9tjjHuv_r8Wbb3SmtTPtEPJI1GOA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying Different Settings in a Visual Diary</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blighe, M. ; O'Connor, N.E. ; Rehatschek, H. ; Kienast, G.</creator><creatorcontrib>Blighe, M. ; O'Connor, N.E. ; Rehatschek, H. ; Kienast, G.</creatorcontrib><description>We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.</description><identifier>ISSN: 2158-5873</identifier><identifier>ISBN: 0769533442</identifier><identifier>ISBN: 9780769533445</identifier><identifier>EISBN: 076953130X</identifier><identifier>EISBN: 9780769531304</identifier><identifier>DOI: 10.1109/WIAMIS.2008.17</identifier><identifier>LCCN: 2007910280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Contracts ; Global Positioning System ; GSM ; Home computing ; Image analysis ; Layout ; Mobile handsets ; Multimedia systems ; Object detection</subject><ispartof>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, p.24-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4556873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4556873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blighe, M.</creatorcontrib><creatorcontrib>O'Connor, N.E.</creatorcontrib><creatorcontrib>Rehatschek, H.</creatorcontrib><creatorcontrib>Kienast, G.</creatorcontrib><title>Identifying Different Settings in a Visual Diary</title><title>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services</title><addtitle>WIAMIS</addtitle><description>We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.</description><subject>Clustering algorithms</subject><subject>Contracts</subject><subject>Global Positioning System</subject><subject>GSM</subject><subject>Home computing</subject><subject>Image analysis</subject><subject>Layout</subject><subject>Mobile handsets</subject><subject>Multimedia systems</subject><subject>Object detection</subject><issn>2158-5873</issn><isbn>0769533442</isbn><isbn>9780769533445</isbn><isbn>076953130X</isbn><isbn>9780769531304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tKAzEUjWjBtnbrxs38wNR7c_O4WZb6Gqi4aFF3JU4SidRBZsZF_96AujqcB-dwhLhEWCKCu35pVo_NdikBeIn2RMzAGqcJCV5P_wkpJc_EVKLmWrOliZiVvHUIkuFcLIbhAwAImR3JqYAmxG7M6Zi79-ompxT7wqttHMeiDFXuKl895-HbH4rt--OFmCR_GOLiD-did3e7Wz_Um6f7Zr3a1NnBWGOi4LVLPgFpq0xSjKaNQZJrkd6cMqDaFILxShFq4sCMlq1yyUptI83F1W9tjjHuv_r8Wbb3SmtTPtEPJI1GOA</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Blighe, M.</creator><creator>O'Connor, N.E.</creator><creator>Rehatschek, H.</creator><creator>Kienast, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Identifying Different Settings in a Visual Diary</title><author>Blighe, M. ; O'Connor, N.E. ; Rehatschek, H. ; Kienast, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1f3da59faf035746f4816ced239c13b94604cfdd6a4431538d88178749f7257e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clustering algorithms</topic><topic>Contracts</topic><topic>Global Positioning System</topic><topic>GSM</topic><topic>Home computing</topic><topic>Image analysis</topic><topic>Layout</topic><topic>Mobile handsets</topic><topic>Multimedia systems</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Blighe, M.</creatorcontrib><creatorcontrib>O'Connor, N.E.</creatorcontrib><creatorcontrib>Rehatschek, H.</creatorcontrib><creatorcontrib>Kienast, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blighe, M.</au><au>O'Connor, N.E.</au><au>Rehatschek, H.</au><au>Kienast, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying Different Settings in a Visual Diary</atitle><btitle>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services</btitle><stitle>WIAMIS</stitle><date>2008-05</date><risdate>2008</risdate><spage>24</spage><epage>27</epage><pages>24-27</pages><issn>2158-5873</issn><isbn>0769533442</isbn><isbn>9780769533445</isbn><eisbn>076953130X</eisbn><eisbn>9780769531304</eisbn><abstract>We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.</abstract><pub>IEEE</pub><doi>10.1109/WIAMIS.2008.17</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-5873
ispartof 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, p.24-27
issn 2158-5873
language eng
recordid cdi_ieee_primary_4556873
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Contracts
Global Positioning System
GSM
Home computing
Image analysis
Layout
Mobile handsets
Multimedia systems
Object detection
title Identifying Different Settings in a Visual Diary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20Different%20Settings%20in%20a%20Visual%20Diary&rft.btitle=2008%20Ninth%20International%20Workshop%20on%20Image%20Analysis%20for%20Multimedia%20Interactive%20Services&rft.au=Blighe,%20M.&rft.date=2008-05&rft.spage=24&rft.epage=27&rft.pages=24-27&rft.issn=2158-5873&rft.isbn=0769533442&rft.isbn_list=9780769533445&rft_id=info:doi/10.1109/WIAMIS.2008.17&rft_dat=%3Cieee_6IE%3E4556873%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=076953130X&rft.eisbn_list=9780769531304&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4556873&rfr_iscdi=true