Identifying Different Settings in a Visual Diary
We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of th...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 24 |
container_title | |
container_volume | |
creator | Blighe, M. O'Connor, N.E. Rehatschek, H. Kienast, G. |
description | We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process. |
doi_str_mv | 10.1109/WIAMIS.2008.17 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4556873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4556873</ieee_id><sourcerecordid>4556873</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1f3da59faf035746f4816ced239c13b94604cfdd6a4431538d88178749f7257e3</originalsourceid><addsrcrecordid>eNo1T8tKAzEUjWjBtnbrxs38wNR7c_O4WZb6Gqi4aFF3JU4SidRBZsZF_96AujqcB-dwhLhEWCKCu35pVo_NdikBeIn2RMzAGqcJCV5P_wkpJc_EVKLmWrOliZiVvHUIkuFcLIbhAwAImR3JqYAmxG7M6Zi79-ompxT7wqttHMeiDFXuKl895-HbH4rt--OFmCR_GOLiD-did3e7Wz_Um6f7Zr3a1NnBWGOi4LVLPgFpq0xSjKaNQZJrkd6cMqDaFILxShFq4sCMlq1yyUptI83F1W9tjjHuv_r8Wbb3SmtTPtEPJI1GOA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying Different Settings in a Visual Diary</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blighe, M. ; O'Connor, N.E. ; Rehatschek, H. ; Kienast, G.</creator><creatorcontrib>Blighe, M. ; O'Connor, N.E. ; Rehatschek, H. ; Kienast, G.</creatorcontrib><description>We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.</description><identifier>ISSN: 2158-5873</identifier><identifier>ISBN: 0769533442</identifier><identifier>ISBN: 9780769533445</identifier><identifier>EISBN: 076953130X</identifier><identifier>EISBN: 9780769531304</identifier><identifier>DOI: 10.1109/WIAMIS.2008.17</identifier><identifier>LCCN: 2007910280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Contracts ; Global Positioning System ; GSM ; Home computing ; Image analysis ; Layout ; Mobile handsets ; Multimedia systems ; Object detection</subject><ispartof>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, p.24-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4556873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4556873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blighe, M.</creatorcontrib><creatorcontrib>O'Connor, N.E.</creatorcontrib><creatorcontrib>Rehatschek, H.</creatorcontrib><creatorcontrib>Kienast, G.</creatorcontrib><title>Identifying Different Settings in a Visual Diary</title><title>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services</title><addtitle>WIAMIS</addtitle><description>We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.</description><subject>Clustering algorithms</subject><subject>Contracts</subject><subject>Global Positioning System</subject><subject>GSM</subject><subject>Home computing</subject><subject>Image analysis</subject><subject>Layout</subject><subject>Mobile handsets</subject><subject>Multimedia systems</subject><subject>Object detection</subject><issn>2158-5873</issn><isbn>0769533442</isbn><isbn>9780769533445</isbn><isbn>076953130X</isbn><isbn>9780769531304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tKAzEUjWjBtnbrxs38wNR7c_O4WZb6Gqi4aFF3JU4SidRBZsZF_96AujqcB-dwhLhEWCKCu35pVo_NdikBeIn2RMzAGqcJCV5P_wkpJc_EVKLmWrOliZiVvHUIkuFcLIbhAwAImR3JqYAmxG7M6Zi79-ompxT7wqttHMeiDFXuKl895-HbH4rt--OFmCR_GOLiD-did3e7Wz_Um6f7Zr3a1NnBWGOi4LVLPgFpq0xSjKaNQZJrkd6cMqDaFILxShFq4sCMlq1yyUptI83F1W9tjjHuv_r8Wbb3SmtTPtEPJI1GOA</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Blighe, M.</creator><creator>O'Connor, N.E.</creator><creator>Rehatschek, H.</creator><creator>Kienast, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Identifying Different Settings in a Visual Diary</title><author>Blighe, M. ; O'Connor, N.E. ; Rehatschek, H. ; Kienast, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1f3da59faf035746f4816ced239c13b94604cfdd6a4431538d88178749f7257e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clustering algorithms</topic><topic>Contracts</topic><topic>Global Positioning System</topic><topic>GSM</topic><topic>Home computing</topic><topic>Image analysis</topic><topic>Layout</topic><topic>Mobile handsets</topic><topic>Multimedia systems</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Blighe, M.</creatorcontrib><creatorcontrib>O'Connor, N.E.</creatorcontrib><creatorcontrib>Rehatschek, H.</creatorcontrib><creatorcontrib>Kienast, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blighe, M.</au><au>O'Connor, N.E.</au><au>Rehatschek, H.</au><au>Kienast, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying Different Settings in a Visual Diary</atitle><btitle>2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services</btitle><stitle>WIAMIS</stitle><date>2008-05</date><risdate>2008</risdate><spage>24</spage><epage>27</epage><pages>24-27</pages><issn>2158-5873</issn><isbn>0769533442</isbn><isbn>9780769533445</isbn><eisbn>076953130X</eisbn><eisbn>9780769531304</eisbn><abstract>We describe an approach to identifying specific settings in large collections of photographs corresponding to a visual diary. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. The goal of the work reported here is to automatically detect settings in images taken over a single week. We achieve this using scale invariant feature transform (SIFT) features and X-means clustering. In addition, we also explore how the use of location based metadata can aid this process.</abstract><pub>IEEE</pub><doi>10.1109/WIAMIS.2008.17</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-5873 |
ispartof | 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, p.24-27 |
issn | 2158-5873 |
language | eng |
recordid | cdi_ieee_primary_4556873 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Contracts Global Positioning System GSM Home computing Image analysis Layout Mobile handsets Multimedia systems Object detection |
title | Identifying Different Settings in a Visual Diary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20Different%20Settings%20in%20a%20Visual%20Diary&rft.btitle=2008%20Ninth%20International%20Workshop%20on%20Image%20Analysis%20for%20Multimedia%20Interactive%20Services&rft.au=Blighe,%20M.&rft.date=2008-05&rft.spage=24&rft.epage=27&rft.pages=24-27&rft.issn=2158-5873&rft.isbn=0769533442&rft.isbn_list=9780769533445&rft_id=info:doi/10.1109/WIAMIS.2008.17&rft_dat=%3Cieee_6IE%3E4556873%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=076953130X&rft.eisbn_list=9780769531304&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4556873&rfr_iscdi=true |