An Improved Longest Common Subsequence Algorithm for Reducing Memory Complexity in Global Alignment of DNA Sequences

The comparison of biological sequences is one of the oldest problems in computational biology. Global alignment is designed to search for highly similar regions in two DNA sequences, where appear in the same order and orientation. Longest Common Subsequence (LCS) is the most typical algorithm for gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parvinnia, E., Taheri, M., ziarati, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 57
container_title
container_volume 1
creator Parvinnia, E.
Taheri, M.
ziarati, K.
description The comparison of biological sequences is one of the oldest problems in computational biology. Global alignment is designed to search for highly similar regions in two DNA sequences, where appear in the same order and orientation. Longest Common Subsequence (LCS) is the most typical algorithm for global alignment that has optimal solution and independent to the shape of its input sequences. Since the space complexity of this algorithm is the multiplication of sequence lengths; we cannot use it for long sequences. In this paper, some rules are extracted to reduce amount of redundant information. Remained information is stacked to be used in backward iteration for finding the optimal path. As we examined in the proposed algorithm, the stack size in comparison with space consumed by LCS algorithm is reduced about 10 times and we could increase the length of input DNA sequences in global alignment.
doi_str_mv 10.1109/BMEI.2008.212
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4548635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4548635</ieee_id><sourcerecordid>4548635</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e2ae1dc52380621d86534e75394f7e04c223696f11712af410748ef413a81313</originalsourceid><addsrcrecordid>eNo9jE9PwjAcQBuVREWOnrz0Cwz765-1PU5EJAFNhDsZ22-zZm1xG0a-vRiJp3d4eY-QW2BjAGbvH5bT-ZgzZsYc-Bm5AitNwi3n52RktWE6tUoAGH7x70AOyPUx0VYKUPySjLrugzEGNtUA_Ir0WaBzv2vjF5Z0EUONXU8n0fsY6Gq_7fBzj6FAmjV1bF3_7mkVW_qG5b5woaZL9LE9_Aa7Br9df6Au0FkTt3lzTFwdPIaexoo-vmR0dZp1N2RQ5U2HoxOHZP00XU-ek8XrbD7JFokDrfoEeY5QFooLw1IOpUmVkKiVsLLSyGTBuUhtWgFo4HklgWlp8EiRGxAghuTub-sQcbNrnc_bw0YqaVKhxA9Cgl4V</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Improved Longest Common Subsequence Algorithm for Reducing Memory Complexity in Global Alignment of DNA Sequences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Parvinnia, E. ; Taheri, M. ; ziarati, K.</creator><creatorcontrib>Parvinnia, E. ; Taheri, M. ; ziarati, K.</creatorcontrib><description>The comparison of biological sequences is one of the oldest problems in computational biology. Global alignment is designed to search for highly similar regions in two DNA sequences, where appear in the same order and orientation. Longest Common Subsequence (LCS) is the most typical algorithm for global alignment that has optimal solution and independent to the shape of its input sequences. Since the space complexity of this algorithm is the multiplication of sequence lengths; we cannot use it for long sequences. In this paper, some rules are extracted to reduce amount of redundant information. Remained information is stacked to be used in backward iteration for finding the optimal path. As we examined in the proposed algorithm, the stack size in comparison with space consumed by LCS algorithm is reduced about 10 times and we could increase the length of input DNA sequences in global alignment.</description><identifier>ISSN: 1948-2914</identifier><identifier>ISBN: 9780769531182</identifier><identifier>ISBN: 0769531180</identifier><identifier>EISSN: 1948-2922</identifier><identifier>DOI: 10.1109/BMEI.2008.212</identifier><identifier>LCCN: 2007943152</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Biomedical engineering ; Biomedical informatics ; Computational biology ; Data mining ; DNA ; Dynamic programming ; global alignment ; Heuristic algorithms ; Longest Common Subsequence (LCS) ; Sequences ; Shape</subject><ispartof>2008 International Conference on BioMedical Engineering and Informatics, 2008, Vol.1, p.57-61</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4548635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4548635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parvinnia, E.</creatorcontrib><creatorcontrib>Taheri, M.</creatorcontrib><creatorcontrib>ziarati, K.</creatorcontrib><title>An Improved Longest Common Subsequence Algorithm for Reducing Memory Complexity in Global Alignment of DNA Sequences</title><title>2008 International Conference on BioMedical Engineering and Informatics</title><addtitle>BMEI</addtitle><description>The comparison of biological sequences is one of the oldest problems in computational biology. Global alignment is designed to search for highly similar regions in two DNA sequences, where appear in the same order and orientation. Longest Common Subsequence (LCS) is the most typical algorithm for global alignment that has optimal solution and independent to the shape of its input sequences. Since the space complexity of this algorithm is the multiplication of sequence lengths; we cannot use it for long sequences. In this paper, some rules are extracted to reduce amount of redundant information. Remained information is stacked to be used in backward iteration for finding the optimal path. As we examined in the proposed algorithm, the stack size in comparison with space consumed by LCS algorithm is reduced about 10 times and we could increase the length of input DNA sequences in global alignment.</description><subject>Application software</subject><subject>Biomedical engineering</subject><subject>Biomedical informatics</subject><subject>Computational biology</subject><subject>Data mining</subject><subject>DNA</subject><subject>Dynamic programming</subject><subject>global alignment</subject><subject>Heuristic algorithms</subject><subject>Longest Common Subsequence (LCS)</subject><subject>Sequences</subject><subject>Shape</subject><issn>1948-2914</issn><issn>1948-2922</issn><isbn>9780769531182</isbn><isbn>0769531180</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jE9PwjAcQBuVREWOnrz0Cwz765-1PU5EJAFNhDsZ22-zZm1xG0a-vRiJp3d4eY-QW2BjAGbvH5bT-ZgzZsYc-Bm5AitNwi3n52RktWE6tUoAGH7x70AOyPUx0VYKUPySjLrugzEGNtUA_Ir0WaBzv2vjF5Z0EUONXU8n0fsY6Gq_7fBzj6FAmjV1bF3_7mkVW_qG5b5woaZL9LE9_Aa7Br9df6Au0FkTt3lzTFwdPIaexoo-vmR0dZp1N2RQ5U2HoxOHZP00XU-ek8XrbD7JFokDrfoEeY5QFooLw1IOpUmVkKiVsLLSyGTBuUhtWgFo4HklgWlp8EiRGxAghuTub-sQcbNrnc_bw0YqaVKhxA9Cgl4V</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Parvinnia, E.</creator><creator>Taheri, M.</creator><creator>ziarati, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>An Improved Longest Common Subsequence Algorithm for Reducing Memory Complexity in Global Alignment of DNA Sequences</title><author>Parvinnia, E. ; Taheri, M. ; ziarati, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e2ae1dc52380621d86534e75394f7e04c223696f11712af410748ef413a81313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Biomedical engineering</topic><topic>Biomedical informatics</topic><topic>Computational biology</topic><topic>Data mining</topic><topic>DNA</topic><topic>Dynamic programming</topic><topic>global alignment</topic><topic>Heuristic algorithms</topic><topic>Longest Common Subsequence (LCS)</topic><topic>Sequences</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Parvinnia, E.</creatorcontrib><creatorcontrib>Taheri, M.</creatorcontrib><creatorcontrib>ziarati, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parvinnia, E.</au><au>Taheri, M.</au><au>ziarati, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Improved Longest Common Subsequence Algorithm for Reducing Memory Complexity in Global Alignment of DNA Sequences</atitle><btitle>2008 International Conference on BioMedical Engineering and Informatics</btitle><stitle>BMEI</stitle><date>2008-05</date><risdate>2008</risdate><volume>1</volume><spage>57</spage><epage>61</epage><pages>57-61</pages><issn>1948-2914</issn><eissn>1948-2922</eissn><isbn>9780769531182</isbn><isbn>0769531180</isbn><abstract>The comparison of biological sequences is one of the oldest problems in computational biology. Global alignment is designed to search for highly similar regions in two DNA sequences, where appear in the same order and orientation. Longest Common Subsequence (LCS) is the most typical algorithm for global alignment that has optimal solution and independent to the shape of its input sequences. Since the space complexity of this algorithm is the multiplication of sequence lengths; we cannot use it for long sequences. In this paper, some rules are extracted to reduce amount of redundant information. Remained information is stacked to be used in backward iteration for finding the optimal path. As we examined in the proposed algorithm, the stack size in comparison with space consumed by LCS algorithm is reduced about 10 times and we could increase the length of input DNA sequences in global alignment.</abstract><pub>IEEE</pub><doi>10.1109/BMEI.2008.212</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-2914
ispartof 2008 International Conference on BioMedical Engineering and Informatics, 2008, Vol.1, p.57-61
issn 1948-2914
1948-2922
language eng
recordid cdi_ieee_primary_4548635
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Biomedical engineering
Biomedical informatics
Computational biology
Data mining
DNA
Dynamic programming
global alignment
Heuristic algorithms
Longest Common Subsequence (LCS)
Sequences
Shape
title An Improved Longest Common Subsequence Algorithm for Reducing Memory Complexity in Global Alignment of DNA Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Improved%20Longest%20Common%20Subsequence%20Algorithm%20for%20Reducing%20Memory%20Complexity%20in%20Global%20Alignment%20of%20DNA%20Sequences&rft.btitle=2008%20International%20Conference%20on%20BioMedical%20Engineering%20and%20Informatics&rft.au=Parvinnia,%20E.&rft.date=2008-05&rft.volume=1&rft.spage=57&rft.epage=61&rft.pages=57-61&rft.issn=1948-2914&rft.eissn=1948-2922&rft.isbn=9780769531182&rft.isbn_list=0769531180&rft_id=info:doi/10.1109/BMEI.2008.212&rft_dat=%3Cieee_6IE%3E4548635%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4548635&rfr_iscdi=true