Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments

We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marks, T.K., Howard, A., Bajracharya, M., Cottrell, G.W., Matthies, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3724
container_issue
container_start_page 3717
container_title
container_volume
creator Marks, T.K.
Howard, A.
Bajracharya, M.
Cottrell, G.W.
Matthies, L.
description We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.
doi_str_mv 10.1109/ROBOT.2008.4543781
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4543781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4543781</ieee_id><sourcerecordid>4543781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f1959dc71bb5421f4d5d90f6ef9f5958e60650739140aea2eacf45b48ab337753</originalsourceid><addsrcrecordid>eNo1kMtKAzEYRuOl4LT2BXSTF5j6Z3KbuKtFq1ApaAsuhJKZ-VMiTqYk04Jvr2JdncXH-RaHkCsGE8bA3Lws75arSQFQToQUXJfshIzND0QhBFNCm1OSFVLrHEr9dkaG_4My5yRjICEXujADkhnIlQAmywsyTOkDADhXKiPvc9u2Nn9dTJ9v6Tr5sKWpx4gdPfjku0BtaOjBRm9DjXQbfUNbu0vUdZH-StQHug-pj_u630dsKIaDj11oMfTpkgyc_Uw4PnJE1g_3q9ljvljOn2bTRe6Zln3umJGmqTWrKikK5kQjGwNOoTNOGlmiAiVBc8MEWLQF2toJWYnSVpxrLfmIXP_9ekTc7KJvbfzaHIvxb0I-WW0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marks, T.K. ; Howard, A. ; Bajracharya, M. ; Cottrell, G.W. ; Matthies, L.</creator><creatorcontrib>Marks, T.K. ; Howard, A. ; Bajracharya, M. ; Cottrell, G.W. ; Matthies, L.</creatorcontrib><description>We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424416469</identifier><identifier>ISBN: 9781424416462</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781424416479</identifier><identifier>EISBN: 1424416477</identifier><identifier>DOI: 10.1109/ROBOT.2008.4543781</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Filtering ; Global Positioning System ; Navigation ; Particle filters ; Proposals ; Simultaneous localization and mapping ; Statistical analysis ; Statistical distributions ; Stereo vision</subject><ispartof>2008 IEEE International Conference on Robotics and Automation, 2008, p.3717-3724</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4543781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4543781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Howard, A.</creatorcontrib><creatorcontrib>Bajracharya, M.</creatorcontrib><creatorcontrib>Cottrell, G.W.</creatorcontrib><creatorcontrib>Matthies, L.</creatorcontrib><title>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</title><title>2008 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.</description><subject>Analysis of variance</subject><subject>Filtering</subject><subject>Global Positioning System</subject><subject>Navigation</subject><subject>Particle filters</subject><subject>Proposals</subject><subject>Simultaneous localization and mapping</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Stereo vision</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424416469</isbn><isbn>9781424416462</isbn><isbn>9781424416479</isbn><isbn>1424416477</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEYRuOl4LT2BXSTF5j6Z3KbuKtFq1ApaAsuhJKZ-VMiTqYk04Jvr2JdncXH-RaHkCsGE8bA3Lws75arSQFQToQUXJfshIzND0QhBFNCm1OSFVLrHEr9dkaG_4My5yRjICEXujADkhnIlQAmywsyTOkDADhXKiPvc9u2Nn9dTJ9v6Tr5sKWpx4gdPfjku0BtaOjBRm9DjXQbfUNbu0vUdZH-StQHug-pj_u630dsKIaDj11oMfTpkgyc_Uw4PnJE1g_3q9ljvljOn2bTRe6Zln3umJGmqTWrKikK5kQjGwNOoTNOGlmiAiVBc8MEWLQF2toJWYnSVpxrLfmIXP_9ekTc7KJvbfzaHIvxb0I-WW0</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Marks, T.K.</creator><creator>Howard, A.</creator><creator>Bajracharya, M.</creator><creator>Cottrell, G.W.</creator><creator>Matthies, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200805</creationdate><title>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</title><author>Marks, T.K. ; Howard, A. ; Bajracharya, M. ; Cottrell, G.W. ; Matthies, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f1959dc71bb5421f4d5d90f6ef9f5958e60650739140aea2eacf45b48ab337753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis of variance</topic><topic>Filtering</topic><topic>Global Positioning System</topic><topic>Navigation</topic><topic>Particle filters</topic><topic>Proposals</topic><topic>Simultaneous localization and mapping</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Howard, A.</creatorcontrib><creatorcontrib>Bajracharya, M.</creatorcontrib><creatorcontrib>Cottrell, G.W.</creatorcontrib><creatorcontrib>Matthies, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marks, T.K.</au><au>Howard, A.</au><au>Bajracharya, M.</au><au>Cottrell, G.W.</au><au>Matthies, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</atitle><btitle>2008 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2008-05</date><risdate>2008</risdate><spage>3717</spage><epage>3724</epage><pages>3717-3724</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424416469</isbn><isbn>9781424416462</isbn><eisbn>9781424416479</eisbn><eisbn>1424416477</eisbn><abstract>We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2008.4543781</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2008 IEEE International Conference on Robotics and Automation, 2008, p.3717-3724
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_4543781
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analysis of variance
Filtering
Global Positioning System
Navigation
Particle filters
Proposals
Simultaneous localization and mapping
Statistical analysis
Statistical distributions
Stereo vision
title Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gamma-SLAM:%20Using%20stereo%20vision%20and%20variance%20grid%20maps%20for%20SLAM%20in%20unstructured%20environments&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Marks,%20T.K.&rft.date=2008-05&rft.spage=3717&rft.epage=3724&rft.pages=3717-3724&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424416469&rft.isbn_list=9781424416462&rft_id=info:doi/10.1109/ROBOT.2008.4543781&rft_dat=%3Cieee_6IE%3E4543781%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416479&rft.eisbn_list=1424416477&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4543781&rfr_iscdi=true