Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments
We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over t...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3724 |
---|---|
container_issue | |
container_start_page | 3717 |
container_title | |
container_volume | |
creator | Marks, T.K. Howard, A. Bajracharya, M. Cottrell, G.W. Matthies, L. |
description | We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings. |
doi_str_mv | 10.1109/ROBOT.2008.4543781 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4543781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4543781</ieee_id><sourcerecordid>4543781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f1959dc71bb5421f4d5d90f6ef9f5958e60650739140aea2eacf45b48ab337753</originalsourceid><addsrcrecordid>eNo1kMtKAzEYRuOl4LT2BXSTF5j6Z3KbuKtFq1ApaAsuhJKZ-VMiTqYk04Jvr2JdncXH-RaHkCsGE8bA3Lws75arSQFQToQUXJfshIzND0QhBFNCm1OSFVLrHEr9dkaG_4My5yRjICEXujADkhnIlQAmywsyTOkDADhXKiPvc9u2Nn9dTJ9v6Tr5sKWpx4gdPfjku0BtaOjBRm9DjXQbfUNbu0vUdZH-StQHug-pj_u630dsKIaDj11oMfTpkgyc_Uw4PnJE1g_3q9ljvljOn2bTRe6Zln3umJGmqTWrKikK5kQjGwNOoTNOGlmiAiVBc8MEWLQF2toJWYnSVpxrLfmIXP_9ekTc7KJvbfzaHIvxb0I-WW0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marks, T.K. ; Howard, A. ; Bajracharya, M. ; Cottrell, G.W. ; Matthies, L.</creator><creatorcontrib>Marks, T.K. ; Howard, A. ; Bajracharya, M. ; Cottrell, G.W. ; Matthies, L.</creatorcontrib><description>We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424416469</identifier><identifier>ISBN: 9781424416462</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781424416479</identifier><identifier>EISBN: 1424416477</identifier><identifier>DOI: 10.1109/ROBOT.2008.4543781</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Filtering ; Global Positioning System ; Navigation ; Particle filters ; Proposals ; Simultaneous localization and mapping ; Statistical analysis ; Statistical distributions ; Stereo vision</subject><ispartof>2008 IEEE International Conference on Robotics and Automation, 2008, p.3717-3724</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4543781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4543781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Howard, A.</creatorcontrib><creatorcontrib>Bajracharya, M.</creatorcontrib><creatorcontrib>Cottrell, G.W.</creatorcontrib><creatorcontrib>Matthies, L.</creatorcontrib><title>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</title><title>2008 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.</description><subject>Analysis of variance</subject><subject>Filtering</subject><subject>Global Positioning System</subject><subject>Navigation</subject><subject>Particle filters</subject><subject>Proposals</subject><subject>Simultaneous localization and mapping</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Stereo vision</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424416469</isbn><isbn>9781424416462</isbn><isbn>9781424416479</isbn><isbn>1424416477</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEYRuOl4LT2BXSTF5j6Z3KbuKtFq1ApaAsuhJKZ-VMiTqYk04Jvr2JdncXH-RaHkCsGE8bA3Lws75arSQFQToQUXJfshIzND0QhBFNCm1OSFVLrHEr9dkaG_4My5yRjICEXujADkhnIlQAmywsyTOkDADhXKiPvc9u2Nn9dTJ9v6Tr5sKWpx4gdPfjku0BtaOjBRm9DjXQbfUNbu0vUdZH-StQHug-pj_u630dsKIaDj11oMfTpkgyc_Uw4PnJE1g_3q9ljvljOn2bTRe6Zln3umJGmqTWrKikK5kQjGwNOoTNOGlmiAiVBc8MEWLQF2toJWYnSVpxrLfmIXP_9ekTc7KJvbfzaHIvxb0I-WW0</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Marks, T.K.</creator><creator>Howard, A.</creator><creator>Bajracharya, M.</creator><creator>Cottrell, G.W.</creator><creator>Matthies, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200805</creationdate><title>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</title><author>Marks, T.K. ; Howard, A. ; Bajracharya, M. ; Cottrell, G.W. ; Matthies, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f1959dc71bb5421f4d5d90f6ef9f5958e60650739140aea2eacf45b48ab337753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis of variance</topic><topic>Filtering</topic><topic>Global Positioning System</topic><topic>Navigation</topic><topic>Particle filters</topic><topic>Proposals</topic><topic>Simultaneous localization and mapping</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Howard, A.</creatorcontrib><creatorcontrib>Bajracharya, M.</creatorcontrib><creatorcontrib>Cottrell, G.W.</creatorcontrib><creatorcontrib>Matthies, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marks, T.K.</au><au>Howard, A.</au><au>Bajracharya, M.</au><au>Cottrell, G.W.</au><au>Matthies, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments</atitle><btitle>2008 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2008-05</date><risdate>2008</risdate><spage>3717</spage><epage>3724</epage><pages>3717-3724</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424416469</isbn><isbn>9781424416462</isbn><eisbn>9781424416479</eisbn><eisbn>1424416477</eisbn><abstract>We introduce a new method for stereo visual SLAM (simultaneous localization and mapping) that works in unstructured, outdoor environments. Unlike other grid-based SLAM algorithms, which use occupancy grid maps, our algorithm uses a new mapping technique that maintains a posterior distribution over the height variance in each cell. This idea was motivated by our experience with outdoor navigation tasks, which has shown height variance to be a useful measure of traversability. To obtain a joint posterior over poses and maps, we use a Rao-Blackwellized particle filter: the pose distribution is estimated using a particle filter, and each particle has its own map that is obtained through exact filtering conditioned on the particle's pose. Visual odometry provides good proposal distributions for the particle pose. In the analytical (exact) filter for the map, we update the sufficient statistics of a gamma distribution over the precision (inverse variance) of heights in each grid cell. We verify the algorithm's accuracy on two outdoor courses by comparing with ground truth data obtained using electronic surveying equipment. In addition, we solve for the optimal transformation from the SLAM map to georeferenced coordinates, based on a noisy GPS signal. We derive an online version of this alignment process, which can be used to maintain a running estimate of the robot's global position that is much more accurate than the GPS readings.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2008.4543781</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2008 IEEE International Conference on Robotics and Automation, 2008, p.3717-3724 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_4543781 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analysis of variance Filtering Global Positioning System Navigation Particle filters Proposals Simultaneous localization and mapping Statistical analysis Statistical distributions Stereo vision |
title | Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstructured environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gamma-SLAM:%20Using%20stereo%20vision%20and%20variance%20grid%20maps%20for%20SLAM%20in%20unstructured%20environments&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Marks,%20T.K.&rft.date=2008-05&rft.spage=3717&rft.epage=3724&rft.pages=3717-3724&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424416469&rft.isbn_list=9781424416462&rft_id=info:doi/10.1109/ROBOT.2008.4543781&rft_dat=%3Cieee_6IE%3E4543781%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416479&rft.eisbn_list=1424416477&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4543781&rfr_iscdi=true |