Flexible synapse detection in fluorescence micrographs by modeling human expert grading
A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1350 |
---|---|
container_issue | |
container_start_page | 1347 |
container_title | |
container_volume | |
creator | Herold, J. Friedenberger, M. Bode, M. Rajpoot, N. Schubert, W. Nattkemper, T.W. |
description | A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation. |
doi_str_mv | 10.1109/ISBI.2008.4541254 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4541254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4541254</ieee_id><sourcerecordid>4541254</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-f52ff584b71d335fae30192f2903efd6ff09ad6b77e5727d23312eb2f7f27a933</originalsourceid><addsrcrecordid>eNo1kMtKAzEYheOlYFv7AOImLzA1-ZM0k6WWVgsFFyouS2byp43MjckUOm_vgOPZHPg-OItDyANnS86Zedp9vOyWwFi6lEpyUPKKzLgEKQcm4JpMuZEqSaWCG7IwOv13oG5Hpw2kEzIbmDaccSXvyCLGHzZESymYnJLvbYGXkBVIY1_ZJiJ12GHehbqioaK-ONctxhyrHGkZ8rY-trY5RZr1tKwdFqE60tO5tBXFS4NtRwfvBnhPJt4WERdjz8nXdvO5fkv276-79fM-CcDTLvEKvFepzDR3QihvUTBuwINhAr1bec-MdatMa1QatAMhOGAGXnvQ1ggxJ49_uwERD00bStv2h_Ew8QvFpllj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Herold, J. ; Friedenberger, M. ; Bode, M. ; Rajpoot, N. ; Schubert, W. ; Nattkemper, T.W.</creator><creatorcontrib>Herold, J. ; Friedenberger, M. ; Bode, M. ; Rajpoot, N. ; Schubert, W. ; Nattkemper, T.W.</creatorcontrib><description>A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 9781424420025</identifier><identifier>ISBN: 1424420024</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424420032</identifier><identifier>EISBN: 9781424420032</identifier><identifier>DOI: 10.1109/ISBI.2008.4541254</identifier><identifier>LCCN: 2007910154</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fluorescence ; Fluorescence microscopy ; High-resolution imaging ; Humans ; Image analysis ; Image edge detection ; Image resolution ; Image texture analysis ; Medical signal detection ; Microscopy ; neural tissue ; Object detection ; supervised machine learning ; synapses</subject><ispartof>2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, p.1347-1350</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4541254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4541254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herold, J.</creatorcontrib><creatorcontrib>Friedenberger, M.</creatorcontrib><creatorcontrib>Bode, M.</creatorcontrib><creatorcontrib>Rajpoot, N.</creatorcontrib><creatorcontrib>Schubert, W.</creatorcontrib><creatorcontrib>Nattkemper, T.W.</creatorcontrib><title>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</title><title>2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.</description><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>High-resolution imaging</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image resolution</subject><subject>Image texture analysis</subject><subject>Medical signal detection</subject><subject>Microscopy</subject><subject>neural tissue</subject><subject>Object detection</subject><subject>supervised machine learning</subject><subject>synapses</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>9781424420025</isbn><isbn>1424420024</isbn><isbn>1424420032</isbn><isbn>9781424420032</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEYheOlYFv7AOImLzA1-ZM0k6WWVgsFFyouS2byp43MjckUOm_vgOPZHPg-OItDyANnS86Zedp9vOyWwFi6lEpyUPKKzLgEKQcm4JpMuZEqSaWCG7IwOv13oG5Hpw2kEzIbmDaccSXvyCLGHzZESymYnJLvbYGXkBVIY1_ZJiJ12GHehbqioaK-ONctxhyrHGkZ8rY-trY5RZr1tKwdFqE60tO5tBXFS4NtRwfvBnhPJt4WERdjz8nXdvO5fkv276-79fM-CcDTLvEKvFepzDR3QihvUTBuwINhAr1bec-MdatMa1QatAMhOGAGXnvQ1ggxJ49_uwERD00bStv2h_Ew8QvFpllj</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Herold, J.</creator><creator>Friedenberger, M.</creator><creator>Bode, M.</creator><creator>Rajpoot, N.</creator><creator>Schubert, W.</creator><creator>Nattkemper, T.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</title><author>Herold, J. ; Friedenberger, M. ; Bode, M. ; Rajpoot, N. ; Schubert, W. ; Nattkemper, T.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-f52ff584b71d335fae30192f2903efd6ff09ad6b77e5727d23312eb2f7f27a933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>High-resolution imaging</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image resolution</topic><topic>Image texture analysis</topic><topic>Medical signal detection</topic><topic>Microscopy</topic><topic>neural tissue</topic><topic>Object detection</topic><topic>supervised machine learning</topic><topic>synapses</topic><toplevel>online_resources</toplevel><creatorcontrib>Herold, J.</creatorcontrib><creatorcontrib>Friedenberger, M.</creatorcontrib><creatorcontrib>Bode, M.</creatorcontrib><creatorcontrib>Rajpoot, N.</creatorcontrib><creatorcontrib>Schubert, W.</creatorcontrib><creatorcontrib>Nattkemper, T.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herold, J.</au><au>Friedenberger, M.</au><au>Bode, M.</au><au>Rajpoot, N.</au><au>Schubert, W.</au><au>Nattkemper, T.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</atitle><btitle>2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2008-05</date><risdate>2008</risdate><spage>1347</spage><epage>1350</epage><pages>1347-1350</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>9781424420025</isbn><isbn>1424420024</isbn><eisbn>1424420032</eisbn><eisbn>9781424420032</eisbn><abstract>A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2008.4541254</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, p.1347-1350 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_4541254 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Fluorescence Fluorescence microscopy High-resolution imaging Humans Image analysis Image edge detection Image resolution Image texture analysis Medical signal detection Microscopy neural tissue Object detection supervised machine learning synapses |
title | Flexible synapse detection in fluorescence micrographs by modeling human expert grading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Flexible%20synapse%20detection%20in%20fluorescence%20micrographs%20by%20modeling%20human%20expert%20grading&rft.btitle=2008%205th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Herold,%20J.&rft.date=2008-05&rft.spage=1347&rft.epage=1350&rft.pages=1347-1350&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=9781424420025&rft.isbn_list=1424420024&rft_id=info:doi/10.1109/ISBI.2008.4541254&rft_dat=%3Cieee_6IE%3E4541254%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424420032&rft.eisbn_list=9781424420032&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4541254&rfr_iscdi=true |