Flexible synapse detection in fluorescence micrographs by modeling human expert grading

A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Herold, J., Friedenberger, M., Bode, M., Rajpoot, N., Schubert, W., Nattkemper, T.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1350
container_issue
container_start_page 1347
container_title
container_volume
creator Herold, J.
Friedenberger, M.
Bode, M.
Rajpoot, N.
Schubert, W.
Nattkemper, T.W.
description A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.
doi_str_mv 10.1109/ISBI.2008.4541254
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4541254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4541254</ieee_id><sourcerecordid>4541254</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-f52ff584b71d335fae30192f2903efd6ff09ad6b77e5727d23312eb2f7f27a933</originalsourceid><addsrcrecordid>eNo1kMtKAzEYheOlYFv7AOImLzA1-ZM0k6WWVgsFFyouS2byp43MjckUOm_vgOPZHPg-OItDyANnS86Zedp9vOyWwFi6lEpyUPKKzLgEKQcm4JpMuZEqSaWCG7IwOv13oG5Hpw2kEzIbmDaccSXvyCLGHzZESymYnJLvbYGXkBVIY1_ZJiJ12GHehbqioaK-ONctxhyrHGkZ8rY-trY5RZr1tKwdFqE60tO5tBXFS4NtRwfvBnhPJt4WERdjz8nXdvO5fkv276-79fM-CcDTLvEKvFepzDR3QihvUTBuwINhAr1bec-MdatMa1QatAMhOGAGXnvQ1ggxJ49_uwERD00bStv2h_Ew8QvFpllj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Herold, J. ; Friedenberger, M. ; Bode, M. ; Rajpoot, N. ; Schubert, W. ; Nattkemper, T.W.</creator><creatorcontrib>Herold, J. ; Friedenberger, M. ; Bode, M. ; Rajpoot, N. ; Schubert, W. ; Nattkemper, T.W.</creatorcontrib><description>A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 9781424420025</identifier><identifier>ISBN: 1424420024</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424420032</identifier><identifier>EISBN: 9781424420032</identifier><identifier>DOI: 10.1109/ISBI.2008.4541254</identifier><identifier>LCCN: 2007910154</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fluorescence ; Fluorescence microscopy ; High-resolution imaging ; Humans ; Image analysis ; Image edge detection ; Image resolution ; Image texture analysis ; Medical signal detection ; Microscopy ; neural tissue ; Object detection ; supervised machine learning ; synapses</subject><ispartof>2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, p.1347-1350</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4541254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4541254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herold, J.</creatorcontrib><creatorcontrib>Friedenberger, M.</creatorcontrib><creatorcontrib>Bode, M.</creatorcontrib><creatorcontrib>Rajpoot, N.</creatorcontrib><creatorcontrib>Schubert, W.</creatorcontrib><creatorcontrib>Nattkemper, T.W.</creatorcontrib><title>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</title><title>2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.</description><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>High-resolution imaging</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image resolution</subject><subject>Image texture analysis</subject><subject>Medical signal detection</subject><subject>Microscopy</subject><subject>neural tissue</subject><subject>Object detection</subject><subject>supervised machine learning</subject><subject>synapses</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>9781424420025</isbn><isbn>1424420024</isbn><isbn>1424420032</isbn><isbn>9781424420032</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEYheOlYFv7AOImLzA1-ZM0k6WWVgsFFyouS2byp43MjckUOm_vgOPZHPg-OItDyANnS86Zedp9vOyWwFi6lEpyUPKKzLgEKQcm4JpMuZEqSaWCG7IwOv13oG5Hpw2kEzIbmDaccSXvyCLGHzZESymYnJLvbYGXkBVIY1_ZJiJ12GHehbqioaK-ONctxhyrHGkZ8rY-trY5RZr1tKwdFqE60tO5tBXFS4NtRwfvBnhPJt4WERdjz8nXdvO5fkv276-79fM-CcDTLvEKvFepzDR3QihvUTBuwINhAr1bec-MdatMa1QatAMhOGAGXnvQ1ggxJ49_uwERD00bStv2h_Ew8QvFpllj</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Herold, J.</creator><creator>Friedenberger, M.</creator><creator>Bode, M.</creator><creator>Rajpoot, N.</creator><creator>Schubert, W.</creator><creator>Nattkemper, T.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</title><author>Herold, J. ; Friedenberger, M. ; Bode, M. ; Rajpoot, N. ; Schubert, W. ; Nattkemper, T.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-f52ff584b71d335fae30192f2903efd6ff09ad6b77e5727d23312eb2f7f27a933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>High-resolution imaging</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image resolution</topic><topic>Image texture analysis</topic><topic>Medical signal detection</topic><topic>Microscopy</topic><topic>neural tissue</topic><topic>Object detection</topic><topic>supervised machine learning</topic><topic>synapses</topic><toplevel>online_resources</toplevel><creatorcontrib>Herold, J.</creatorcontrib><creatorcontrib>Friedenberger, M.</creatorcontrib><creatorcontrib>Bode, M.</creatorcontrib><creatorcontrib>Rajpoot, N.</creatorcontrib><creatorcontrib>Schubert, W.</creatorcontrib><creatorcontrib>Nattkemper, T.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herold, J.</au><au>Friedenberger, M.</au><au>Bode, M.</au><au>Rajpoot, N.</au><au>Schubert, W.</au><au>Nattkemper, T.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Flexible synapse detection in fluorescence micrographs by modeling human expert grading</atitle><btitle>2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2008-05</date><risdate>2008</risdate><spage>1347</spage><epage>1350</epage><pages>1347-1350</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>9781424420025</isbn><isbn>1424420024</isbn><eisbn>1424420032</eisbn><eisbn>9781424420032</eisbn><abstract>A particularly difficult task in molecular imaging is the analysis of fluorescence microscopy images of neural tissue, as they usually exhibit a high density of objects with diffuse signals. To automate synapse detection in such images, one has to simulate aspects of human pattern recognition skills to account for low signal-to-noise-ratios. We propose a machine learning based method that allows a direct integration of the experts' visual expertise who tag a low number of referential synapses according to their degree of synapse likeness. The sensitivity and positive predictive values show that by using graded likeness information in our learning algorithm we can provide an intuitively tunable tool for neural tissue slide evaluation.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2008.4541254</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, p.1347-1350
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_4541254
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fluorescence
Fluorescence microscopy
High-resolution imaging
Humans
Image analysis
Image edge detection
Image resolution
Image texture analysis
Medical signal detection
Microscopy
neural tissue
Object detection
supervised machine learning
synapses
title Flexible synapse detection in fluorescence micrographs by modeling human expert grading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Flexible%20synapse%20detection%20in%20fluorescence%20micrographs%20by%20modeling%20human%20expert%20grading&rft.btitle=2008%205th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Herold,%20J.&rft.date=2008-05&rft.spage=1347&rft.epage=1350&rft.pages=1347-1350&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=9781424420025&rft.isbn_list=1424420024&rft_id=info:doi/10.1109/ISBI.2008.4541254&rft_dat=%3Cieee_6IE%3E4541254%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424420032&rft.eisbn_list=9781424420032&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4541254&rfr_iscdi=true