Comparative Assessment of Prediction Models in Voltage Control

Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Beccuti, A.G., Demiray, T., Zima, M., Andersson, G., Morari, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1026
container_issue
container_start_page 1021
container_title
container_volume
creator Beccuti, A.G.
Demiray, T.
Zima, M.
Andersson, G.
Morari, M.
description Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.
doi_str_mv 10.1109/PCT.2007.4538455
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4538455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4538455</ieee_id><sourcerecordid>4538455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-81287536d5e8bf78462fb5cb584e4e6f5592918e16353ec8f832c6ccab76d4193</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhSNS0NbuBTf5AzPmdfPYCGXwBRW7qOKuZDJ3JDKdlEkQ_PcWLJ7N4YPDB4eQa85qzpm73TTbWjBmagXSKoAzMudKKCW4Yx_n_2CdnpH5cWgd48KYC7LM-Ysdo4A5oS_JXZP2Bz_5Er-RrnLGnPc4Fpp6upmwi6HENNKX1OGQaRzpexqK_0TapLFMabgis94PGZenXpC3h_tt81StXx-fm9W6itxAqSwX1oDUHaBte2OVFn0LoQWrUKHuAZxw3CLXEiQG21spgg7Bt0Z3iju5IDd_3oiIu8MU93762Z3Oy19hiEqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparative Assessment of Prediction Models in Voltage Control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Beccuti, A.G. ; Demiray, T. ; Zima, M. ; Andersson, G. ; Morari, M.</creator><creatorcontrib>Beccuti, A.G. ; Demiray, T. ; Zima, M. ; Andersson, G. ; Morari, M.</creatorcontrib><description>Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.</description><identifier>ISBN: 1424421896</identifier><identifier>ISBN: 9781424421893</identifier><identifier>EISBN: 142442190X</identifier><identifier>EISBN: 9781424421909</identifier><identifier>DOI: 10.1109/PCT.2007.4538455</identifier><identifier>LCCN: 2008901277</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Capacitive sensors ; Control systems ; Optimal control ; Power system dynamics ; Power system modeling ; Power system reliability ; Predictive control ; Predictive models ; Voltage control</subject><ispartof>2007 IEEE Lausanne Power Tech, 2007, p.1021-1026</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4538455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4538455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beccuti, A.G.</creatorcontrib><creatorcontrib>Demiray, T.</creatorcontrib><creatorcontrib>Zima, M.</creatorcontrib><creatorcontrib>Andersson, G.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><title>Comparative Assessment of Prediction Models in Voltage Control</title><title>2007 IEEE Lausanne Power Tech</title><addtitle>PTC</addtitle><description>Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.</description><subject>Automatic control</subject><subject>Capacitive sensors</subject><subject>Control systems</subject><subject>Optimal control</subject><subject>Power system dynamics</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Voltage control</subject><isbn>1424421896</isbn><isbn>9781424421893</isbn><isbn>142442190X</isbn><isbn>9781424421909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLAzEUhSNS0NbuBTf5AzPmdfPYCGXwBRW7qOKuZDJ3JDKdlEkQ_PcWLJ7N4YPDB4eQa85qzpm73TTbWjBmagXSKoAzMudKKCW4Yx_n_2CdnpH5cWgd48KYC7LM-Ysdo4A5oS_JXZP2Bz_5Er-RrnLGnPc4Fpp6upmwi6HENNKX1OGQaRzpexqK_0TapLFMabgis94PGZenXpC3h_tt81StXx-fm9W6itxAqSwX1oDUHaBte2OVFn0LoQWrUKHuAZxw3CLXEiQG21spgg7Bt0Z3iju5IDd_3oiIu8MU93762Z3Oy19hiEqA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Beccuti, A.G.</creator><creator>Demiray, T.</creator><creator>Zima, M.</creator><creator>Andersson, G.</creator><creator>Morari, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>Comparative Assessment of Prediction Models in Voltage Control</title><author>Beccuti, A.G. ; Demiray, T. ; Zima, M. ; Andersson, G. ; Morari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-81287536d5e8bf78462fb5cb584e4e6f5592918e16353ec8f832c6ccab76d4193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automatic control</topic><topic>Capacitive sensors</topic><topic>Control systems</topic><topic>Optimal control</topic><topic>Power system dynamics</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Beccuti, A.G.</creatorcontrib><creatorcontrib>Demiray, T.</creatorcontrib><creatorcontrib>Zima, M.</creatorcontrib><creatorcontrib>Andersson, G.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beccuti, A.G.</au><au>Demiray, T.</au><au>Zima, M.</au><au>Andersson, G.</au><au>Morari, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative Assessment of Prediction Models in Voltage Control</atitle><btitle>2007 IEEE Lausanne Power Tech</btitle><stitle>PTC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1021</spage><epage>1026</epage><pages>1021-1026</pages><isbn>1424421896</isbn><isbn>9781424421893</isbn><eisbn>142442190X</eisbn><eisbn>9781424421909</eisbn><abstract>Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.</abstract><pub>IEEE</pub><doi>10.1109/PCT.2007.4538455</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421896
ispartof 2007 IEEE Lausanne Power Tech, 2007, p.1021-1026
issn
language eng
recordid cdi_ieee_primary_4538455
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Capacitive sensors
Control systems
Optimal control
Power system dynamics
Power system modeling
Power system reliability
Predictive control
Predictive models
Voltage control
title Comparative Assessment of Prediction Models in Voltage Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20Assessment%20of%20Prediction%20Models%20in%20Voltage%20Control&rft.btitle=2007%20IEEE%20Lausanne%20Power%20Tech&rft.au=Beccuti,%20A.G.&rft.date=2007-07&rft.spage=1021&rft.epage=1026&rft.pages=1021-1026&rft.isbn=1424421896&rft.isbn_list=9781424421893&rft_id=info:doi/10.1109/PCT.2007.4538455&rft_dat=%3Cieee_6IE%3E4538455%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142442190X&rft.eisbn_list=9781424421909&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4538455&rfr_iscdi=true