Comparative Assessment of Prediction Models in Voltage Control
Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract t...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1026 |
---|---|
container_issue | |
container_start_page | 1021 |
container_title | |
container_volume | |
creator | Beccuti, A.G. Demiray, T. Zima, M. Andersson, G. Morari, M. |
description | Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity. |
doi_str_mv | 10.1109/PCT.2007.4538455 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4538455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4538455</ieee_id><sourcerecordid>4538455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-81287536d5e8bf78462fb5cb584e4e6f5592918e16353ec8f832c6ccab76d4193</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhSNS0NbuBTf5AzPmdfPYCGXwBRW7qOKuZDJ3JDKdlEkQ_PcWLJ7N4YPDB4eQa85qzpm73TTbWjBmagXSKoAzMudKKCW4Yx_n_2CdnpH5cWgd48KYC7LM-Ysdo4A5oS_JXZP2Bz_5Er-RrnLGnPc4Fpp6upmwi6HENNKX1OGQaRzpexqK_0TapLFMabgis94PGZenXpC3h_tt81StXx-fm9W6itxAqSwX1oDUHaBte2OVFn0LoQWrUKHuAZxw3CLXEiQG21spgg7Bt0Z3iju5IDd_3oiIu8MU93762Z3Oy19hiEqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparative Assessment of Prediction Models in Voltage Control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Beccuti, A.G. ; Demiray, T. ; Zima, M. ; Andersson, G. ; Morari, M.</creator><creatorcontrib>Beccuti, A.G. ; Demiray, T. ; Zima, M. ; Andersson, G. ; Morari, M.</creatorcontrib><description>Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.</description><identifier>ISBN: 1424421896</identifier><identifier>ISBN: 9781424421893</identifier><identifier>EISBN: 142442190X</identifier><identifier>EISBN: 9781424421909</identifier><identifier>DOI: 10.1109/PCT.2007.4538455</identifier><identifier>LCCN: 2008901277</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Capacitive sensors ; Control systems ; Optimal control ; Power system dynamics ; Power system modeling ; Power system reliability ; Predictive control ; Predictive models ; Voltage control</subject><ispartof>2007 IEEE Lausanne Power Tech, 2007, p.1021-1026</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4538455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4538455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beccuti, A.G.</creatorcontrib><creatorcontrib>Demiray, T.</creatorcontrib><creatorcontrib>Zima, M.</creatorcontrib><creatorcontrib>Andersson, G.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><title>Comparative Assessment of Prediction Models in Voltage Control</title><title>2007 IEEE Lausanne Power Tech</title><addtitle>PTC</addtitle><description>Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.</description><subject>Automatic control</subject><subject>Capacitive sensors</subject><subject>Control systems</subject><subject>Optimal control</subject><subject>Power system dynamics</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Voltage control</subject><isbn>1424421896</isbn><isbn>9781424421893</isbn><isbn>142442190X</isbn><isbn>9781424421909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLAzEUhSNS0NbuBTf5AzPmdfPYCGXwBRW7qOKuZDJ3JDKdlEkQ_PcWLJ7N4YPDB4eQa85qzpm73TTbWjBmagXSKoAzMudKKCW4Yx_n_2CdnpH5cWgd48KYC7LM-Ysdo4A5oS_JXZP2Bz_5Er-RrnLGnPc4Fpp6upmwi6HENNKX1OGQaRzpexqK_0TapLFMabgis94PGZenXpC3h_tt81StXx-fm9W6itxAqSwX1oDUHaBte2OVFn0LoQWrUKHuAZxw3CLXEiQG21spgg7Bt0Z3iju5IDd_3oiIu8MU93762Z3Oy19hiEqA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Beccuti, A.G.</creator><creator>Demiray, T.</creator><creator>Zima, M.</creator><creator>Andersson, G.</creator><creator>Morari, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>Comparative Assessment of Prediction Models in Voltage Control</title><author>Beccuti, A.G. ; Demiray, T. ; Zima, M. ; Andersson, G. ; Morari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-81287536d5e8bf78462fb5cb584e4e6f5592918e16353ec8f832c6ccab76d4193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automatic control</topic><topic>Capacitive sensors</topic><topic>Control systems</topic><topic>Optimal control</topic><topic>Power system dynamics</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Beccuti, A.G.</creatorcontrib><creatorcontrib>Demiray, T.</creatorcontrib><creatorcontrib>Zima, M.</creatorcontrib><creatorcontrib>Andersson, G.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beccuti, A.G.</au><au>Demiray, T.</au><au>Zima, M.</au><au>Andersson, G.</au><au>Morari, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative Assessment of Prediction Models in Voltage Control</atitle><btitle>2007 IEEE Lausanne Power Tech</btitle><stitle>PTC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1021</spage><epage>1026</epage><pages>1021-1026</pages><isbn>1424421896</isbn><isbn>9781424421893</isbn><eisbn>142442190X</eisbn><eisbn>9781424421909</eisbn><abstract>Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. In this sense there have been a number of publications in the past few years concerning the employment of predictive control schemes to counteract the possibility of voltage collapses, all of which inherently rely on a prediction model of the network to choose the control action to apply onto the system. The tradeoff between complexity and accuracy of the chosen model is therefore relevant in the derivation of the control scheme, as for such a system-critical real-time application it must yield reliable predicted values whilst avoiding an excessively onerous degree of complexity.</abstract><pub>IEEE</pub><doi>10.1109/PCT.2007.4538455</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421896 |
ispartof | 2007 IEEE Lausanne Power Tech, 2007, p.1021-1026 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4538455 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic control Capacitive sensors Control systems Optimal control Power system dynamics Power system modeling Power system reliability Predictive control Predictive models Voltage control |
title | Comparative Assessment of Prediction Models in Voltage Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20Assessment%20of%20Prediction%20Models%20in%20Voltage%20Control&rft.btitle=2007%20IEEE%20Lausanne%20Power%20Tech&rft.au=Beccuti,%20A.G.&rft.date=2007-07&rft.spage=1021&rft.epage=1026&rft.pages=1021-1026&rft.isbn=1424421896&rft.isbn_list=9781424421893&rft_id=info:doi/10.1109/PCT.2007.4538455&rft_dat=%3Cieee_6IE%3E4538455%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142442190X&rft.eisbn_list=9781424421909&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4538455&rfr_iscdi=true |