A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis
This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contra...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1377 |
---|---|
container_issue | |
container_start_page | 1372 |
container_title | |
container_volume | |
creator | Ampeliotis, D. Antonakoudi, A. Berberidis, K. Psarakis, E.Z. Kounoudes, A. |
description | This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination. |
doi_str_mv | 10.1109/ISCCSP.2008.4537440 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4537440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4537440</ieee_id><sourcerecordid>4537440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-f0e55b71e073d996c329bbcae4014ca182876a07af718bc7cd68b0a5089ca2023</originalsourceid><addsrcrecordid>eNo1UMtqwzAQVCmBNmm-IBf9gNOVLFvSMZg-AoEW0p7DWl6nKokdJPWQv69Kk70Mu7MzzC5jCwFLIcA-rrdNs31fSgCzVFWplYIbNrfaCCWVErUx8pZNr42uJ2yad7UtK6vEHZvH-A25stSCvmf7FXfj8fSTKBToO-p4PMdER96Pgacv4h0lcsmPAx97fgpjTJiIOxwcBd5izIrMHXE_UPKOB4rj8Edyn2fEccDDOfr4wCY9HiLNLzhjn89PH81rsXl7WTerTeGlhFT0QFXVakGgy87a2pXStq1DUiCUQ2FkPglBY6-FaZ12XW1awAqMdShBljO2-Pf1RLQ7hZwinHeXR5W_sa9biQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ampeliotis, D. ; Antonakoudi, A. ; Berberidis, K. ; Psarakis, E.Z. ; Kounoudes, A.</creator><creatorcontrib>Ampeliotis, D. ; Antonakoudi, A. ; Berberidis, K. ; Psarakis, E.Z. ; Kounoudes, A.</creatorcontrib><description>This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.</description><identifier>ISBN: 1424416876</identifier><identifier>ISBN: 9781424416875</identifier><identifier>EISBN: 9781424416882</identifier><identifier>EISBN: 1424416884</identifier><identifier>DOI: 10.1109/ISCCSP.2008.4537440</identifier><identifier>LCCN: 2007935941</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer detection ; Classification algorithms ; Data mining ; Feature extraction ; Glands ; Image analysis ; Magnetic resonance ; Magnetic resonance imaging ; Pattern recognition ; Prostate cancer</subject><ispartof>2008 3rd International Symposium on Communications, Control and Signal Processing, 2008, p.1372-1377</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4537440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4537440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ampeliotis, D.</creatorcontrib><creatorcontrib>Antonakoudi, A.</creatorcontrib><creatorcontrib>Berberidis, K.</creatorcontrib><creatorcontrib>Psarakis, E.Z.</creatorcontrib><creatorcontrib>Kounoudes, A.</creatorcontrib><title>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</title><title>2008 3rd International Symposium on Communications, Control and Signal Processing</title><addtitle>ISCCSP</addtitle><description>This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.</description><subject>Cancer detection</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Glands</subject><subject>Image analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Pattern recognition</subject><subject>Prostate cancer</subject><isbn>1424416876</isbn><isbn>9781424416875</isbn><isbn>9781424416882</isbn><isbn>1424416884</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtqwzAQVCmBNmm-IBf9gNOVLFvSMZg-AoEW0p7DWl6nKokdJPWQv69Kk70Mu7MzzC5jCwFLIcA-rrdNs31fSgCzVFWplYIbNrfaCCWVErUx8pZNr42uJ2yad7UtK6vEHZvH-A25stSCvmf7FXfj8fSTKBToO-p4PMdER96Pgacv4h0lcsmPAx97fgpjTJiIOxwcBd5izIrMHXE_UPKOB4rj8Edyn2fEccDDOfr4wCY9HiLNLzhjn89PH81rsXl7WTerTeGlhFT0QFXVakGgy87a2pXStq1DUiCUQ2FkPglBY6-FaZ12XW1awAqMdShBljO2-Pf1RLQ7hZwinHeXR5W_sa9biQ</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Ampeliotis, D.</creator><creator>Antonakoudi, A.</creator><creator>Berberidis, K.</creator><creator>Psarakis, E.Z.</creator><creator>Kounoudes, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200803</creationdate><title>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</title><author>Ampeliotis, D. ; Antonakoudi, A. ; Berberidis, K. ; Psarakis, E.Z. ; Kounoudes, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-f0e55b71e073d996c329bbcae4014ca182876a07af718bc7cd68b0a5089ca2023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cancer detection</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Glands</topic><topic>Image analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Pattern recognition</topic><topic>Prostate cancer</topic><toplevel>online_resources</toplevel><creatorcontrib>Ampeliotis, D.</creatorcontrib><creatorcontrib>Antonakoudi, A.</creatorcontrib><creatorcontrib>Berberidis, K.</creatorcontrib><creatorcontrib>Psarakis, E.Z.</creatorcontrib><creatorcontrib>Kounoudes, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ampeliotis, D.</au><au>Antonakoudi, A.</au><au>Berberidis, K.</au><au>Psarakis, E.Z.</au><au>Kounoudes, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</atitle><btitle>2008 3rd International Symposium on Communications, Control and Signal Processing</btitle><stitle>ISCCSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>1372</spage><epage>1377</epage><pages>1372-1377</pages><isbn>1424416876</isbn><isbn>9781424416875</isbn><eisbn>9781424416882</eisbn><eisbn>1424416884</eisbn><abstract>This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.</abstract><pub>IEEE</pub><doi>10.1109/ISCCSP.2008.4537440</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424416876 |
ispartof | 2008 3rd International Symposium on Communications, Control and Signal Processing, 2008, p.1372-1377 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4537440 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cancer detection Classification algorithms Data mining Feature extraction Glands Image analysis Magnetic resonance Magnetic resonance imaging Pattern recognition Prostate cancer |
title | A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20computer-aided%20system%20for%20the%20detection%20of%20prostate%20cancer%20based%20on%20magnetic%20resonance%20image%20analysis&rft.btitle=2008%203rd%20International%20Symposium%20on%20Communications,%20Control%20and%20Signal%20Processing&rft.au=Ampeliotis,%20D.&rft.date=2008-03&rft.spage=1372&rft.epage=1377&rft.pages=1372-1377&rft.isbn=1424416876&rft.isbn_list=9781424416875&rft_id=info:doi/10.1109/ISCCSP.2008.4537440&rft_dat=%3Cieee_6IE%3E4537440%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416882&rft.eisbn_list=1424416884&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4537440&rfr_iscdi=true |