A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis

This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ampeliotis, D., Antonakoudi, A., Berberidis, K., Psarakis, E.Z., Kounoudes, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1377
container_issue
container_start_page 1372
container_title
container_volume
creator Ampeliotis, D.
Antonakoudi, A.
Berberidis, K.
Psarakis, E.Z.
Kounoudes, A.
description This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.
doi_str_mv 10.1109/ISCCSP.2008.4537440
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4537440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4537440</ieee_id><sourcerecordid>4537440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-f0e55b71e073d996c329bbcae4014ca182876a07af718bc7cd68b0a5089ca2023</originalsourceid><addsrcrecordid>eNo1UMtqwzAQVCmBNmm-IBf9gNOVLFvSMZg-AoEW0p7DWl6nKokdJPWQv69Kk70Mu7MzzC5jCwFLIcA-rrdNs31fSgCzVFWplYIbNrfaCCWVErUx8pZNr42uJ2yad7UtK6vEHZvH-A25stSCvmf7FXfj8fSTKBToO-p4PMdER96Pgacv4h0lcsmPAx97fgpjTJiIOxwcBd5izIrMHXE_UPKOB4rj8Edyn2fEccDDOfr4wCY9HiLNLzhjn89PH81rsXl7WTerTeGlhFT0QFXVakGgy87a2pXStq1DUiCUQ2FkPglBY6-FaZ12XW1awAqMdShBljO2-Pf1RLQ7hZwinHeXR5W_sa9biQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ampeliotis, D. ; Antonakoudi, A. ; Berberidis, K. ; Psarakis, E.Z. ; Kounoudes, A.</creator><creatorcontrib>Ampeliotis, D. ; Antonakoudi, A. ; Berberidis, K. ; Psarakis, E.Z. ; Kounoudes, A.</creatorcontrib><description>This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.</description><identifier>ISBN: 1424416876</identifier><identifier>ISBN: 9781424416875</identifier><identifier>EISBN: 9781424416882</identifier><identifier>EISBN: 1424416884</identifier><identifier>DOI: 10.1109/ISCCSP.2008.4537440</identifier><identifier>LCCN: 2007935941</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer detection ; Classification algorithms ; Data mining ; Feature extraction ; Glands ; Image analysis ; Magnetic resonance ; Magnetic resonance imaging ; Pattern recognition ; Prostate cancer</subject><ispartof>2008 3rd International Symposium on Communications, Control and Signal Processing, 2008, p.1372-1377</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4537440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4537440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ampeliotis, D.</creatorcontrib><creatorcontrib>Antonakoudi, A.</creatorcontrib><creatorcontrib>Berberidis, K.</creatorcontrib><creatorcontrib>Psarakis, E.Z.</creatorcontrib><creatorcontrib>Kounoudes, A.</creatorcontrib><title>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</title><title>2008 3rd International Symposium on Communications, Control and Signal Processing</title><addtitle>ISCCSP</addtitle><description>This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.</description><subject>Cancer detection</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Glands</subject><subject>Image analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Pattern recognition</subject><subject>Prostate cancer</subject><isbn>1424416876</isbn><isbn>9781424416875</isbn><isbn>9781424416882</isbn><isbn>1424416884</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtqwzAQVCmBNmm-IBf9gNOVLFvSMZg-AoEW0p7DWl6nKokdJPWQv69Kk70Mu7MzzC5jCwFLIcA-rrdNs31fSgCzVFWplYIbNrfaCCWVErUx8pZNr42uJ2yad7UtK6vEHZvH-A25stSCvmf7FXfj8fSTKBToO-p4PMdER96Pgacv4h0lcsmPAx97fgpjTJiIOxwcBd5izIrMHXE_UPKOB4rj8Edyn2fEccDDOfr4wCY9HiLNLzhjn89PH81rsXl7WTerTeGlhFT0QFXVakGgy87a2pXStq1DUiCUQ2FkPglBY6-FaZ12XW1awAqMdShBljO2-Pf1RLQ7hZwinHeXR5W_sa9biQ</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Ampeliotis, D.</creator><creator>Antonakoudi, A.</creator><creator>Berberidis, K.</creator><creator>Psarakis, E.Z.</creator><creator>Kounoudes, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200803</creationdate><title>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</title><author>Ampeliotis, D. ; Antonakoudi, A. ; Berberidis, K. ; Psarakis, E.Z. ; Kounoudes, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-f0e55b71e073d996c329bbcae4014ca182876a07af718bc7cd68b0a5089ca2023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cancer detection</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Glands</topic><topic>Image analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Pattern recognition</topic><topic>Prostate cancer</topic><toplevel>online_resources</toplevel><creatorcontrib>Ampeliotis, D.</creatorcontrib><creatorcontrib>Antonakoudi, A.</creatorcontrib><creatorcontrib>Berberidis, K.</creatorcontrib><creatorcontrib>Psarakis, E.Z.</creatorcontrib><creatorcontrib>Kounoudes, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ampeliotis, D.</au><au>Antonakoudi, A.</au><au>Berberidis, K.</au><au>Psarakis, E.Z.</au><au>Kounoudes, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis</atitle><btitle>2008 3rd International Symposium on Communications, Control and Signal Processing</btitle><stitle>ISCCSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>1372</spage><epage>1377</epage><pages>1372-1377</pages><isbn>1424416876</isbn><isbn>9781424416875</isbn><eisbn>9781424416882</eisbn><eisbn>1424416884</eisbn><abstract>This paper presents an overview of a computer- aided system for the detection of carcinomas in the prostate gland. The proposed system incorporates information from two different types of magnetic resonance images (MRIs), namely the T2-weighted morphological images and the T1-weighted dynamic contrast enhanced (DCE) images, to extract discriminative features that will be used in the training phase of a classification algorithm for the differentiation between malignant and benign tissue. The resulting feature vectors are also used for the assessment of new patient cases. The pattern recognition scheme is based on probabilistic neural networks (PNNs). The parameters of the PNNs are estimated using the expectation- maximization (EM) algorithm. The performance of the proposed computer-aided detection system is evaluated through training and testing on several patient cases, whose condition has been previously assessed through ultrasound-guided biopsy and MRI examination.</abstract><pub>IEEE</pub><doi>10.1109/ISCCSP.2008.4537440</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424416876
ispartof 2008 3rd International Symposium on Communications, Control and Signal Processing, 2008, p.1372-1377
issn
language eng
recordid cdi_ieee_primary_4537440
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cancer detection
Classification algorithms
Data mining
Feature extraction
Glands
Image analysis
Magnetic resonance
Magnetic resonance imaging
Pattern recognition
Prostate cancer
title A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20computer-aided%20system%20for%20the%20detection%20of%20prostate%20cancer%20based%20on%20magnetic%20resonance%20image%20analysis&rft.btitle=2008%203rd%20International%20Symposium%20on%20Communications,%20Control%20and%20Signal%20Processing&rft.au=Ampeliotis,%20D.&rft.date=2008-03&rft.spage=1372&rft.epage=1377&rft.pages=1372-1377&rft.isbn=1424416876&rft.isbn_list=9781424416875&rft_id=info:doi/10.1109/ISCCSP.2008.4537440&rft_dat=%3Cieee_6IE%3E4537440%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416882&rft.eisbn_list=1424416884&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4537440&rfr_iscdi=true