DC-SIMD : Dynamic communication for SIMD processors

SIMD (single instruction multiple data)-type processors have been found very efficient in image processing applications, because their repetitive structure is able to exploit the huge amount of data-level parallelism in pixel-type operations, operating at a relatively low energy consumption rate. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frijns, R., Fatemi, H., Mesman, B., Corporaal, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SIMD (single instruction multiple data)-type processors have been found very efficient in image processing applications, because their repetitive structure is able to exploit the huge amount of data-level parallelism in pixel-type operations, operating at a relatively low energy consumption rate. However, current SIMD architectures lack support for dynamic communication between processing elements, which is needed to efficiently map a set of non-linear algorithms. An architecture for dynamic communication support has been proposed, but this architecture needs large amounts of buffering to function properly. In this paper, three architectures supporting dynamic communication without the need of large amounts of buffering are presented, requiring 98% less buffer space. Cycle-true communication architecture simulators have been developed to accurately predict the performance of the different architectures. Simulations with several test algorithms have shown a performance improvement of up to 5x compared to a locally connected SIMD-processor. Also, detailed area models have been developed, estimating the three proposed architectures to have an area overhead of 30-70% compared to a locally connected SIMD architecture (like the IMAP). When memory is taken into account as well, the overhead is estimated to be 13-28%.
ISSN:1530-2075
DOI:10.1109/IPDPS.2008.4536274