Self-stabilizing wavelets and ϱ-hops coordination

In this paper, we first introduce a simple tool called the wavelet or sigma-wavelet scheme. Wavelets deal with coordination among processes which are at most sigma hops away of each other. We propose a self-stabilizing solution for this scheme. Our solution requires no underlying structure and works...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boulinier, C., Petit, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Boulinier, C.
Petit, F.
description In this paper, we first introduce a simple tool called the wavelet or sigma-wavelet scheme. Wavelets deal with coordination among processes which are at most sigma hops away of each other. We propose a self-stabilizing solution for this scheme. Our solution requires no underlying structure and works in arbitrary anonymous settings, i.e., where process identifiers are not required. We show that our solution provides a simple and generic self-stabilizing sigma-infimum computation. Next, we present a self-stabilizing sigma-barrier synchronization protocol based on the wavelet scheme. We show that our protocol provides an efficient device in the design of local coordination problems at distance sigma, such as the sigma-local resource allocation (LRA). In particular, we propose a solution for the popular sigma-local mutual exclusion (LME) problem. The solution to sigma-LME also provides a transformer to transform algorithms written under sigma-central daemon into algorithms working with any distributed daemon.
doi_str_mv 10.1109/IPDPS.2008.4536130
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4536130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4536130</ieee_id><sourcerecordid>4536130</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d94b460bb8be2f83a1e9f3b25f6d99ed03f931803cc5c1fda0cbc24da3d3c353</originalsourceid><addsrcrecordid>eNpFj11KAzEUhSMq2NZuQF9mAxlvcpNx8ij1r1BoYXwv-bnRyDhTJoOiu3IlbsmCBc_L4Xs4HxzGLgSUQoC5Wm5uN00pAepSaawEwhGbCiWVEpVR5vgfEE7YRGgELuFan7F5zq-wz34mFU6YbKiNPI_WpTZ9pe65-LDv1NKYC9uF4uebv_S7XPi-H0Lq7Jj67pydRttmmh96xpr7u6fFI1-tH5aLmxVPBkYejHKqAudqRzLWaAWZiE7qWAVjKABGg6IG9F57EYMF77xUwWJAjxpn7PLPmohouxvSmx0-t4e3-AvypEgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-stabilizing wavelets and ϱ-hops coordination</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boulinier, C. ; Petit, F.</creator><creatorcontrib>Boulinier, C. ; Petit, F.</creatorcontrib><description>In this paper, we first introduce a simple tool called the wavelet or sigma-wavelet scheme. Wavelets deal with coordination among processes which are at most sigma hops away of each other. We propose a self-stabilizing solution for this scheme. Our solution requires no underlying structure and works in arbitrary anonymous settings, i.e., where process identifiers are not required. We show that our solution provides a simple and generic self-stabilizing sigma-infimum computation. Next, we present a self-stabilizing sigma-barrier synchronization protocol based on the wavelet scheme. We show that our protocol provides an efficient device in the design of local coordination problems at distance sigma, such as the sigma-local resource allocation (LRA). In particular, we propose a solution for the popular sigma-local mutual exclusion (LME) problem. The solution to sigma-LME also provides a transformer to transform algorithms written under sigma-central daemon into algorithms working with any distributed daemon.</description><identifier>ISSN: 1530-2075</identifier><identifier>ISBN: 1424416930</identifier><identifier>ISBN: 9781424416936</identifier><identifier>EISBN: 1424416949</identifier><identifier>EISBN: 9781424416943</identifier><identifier>DOI: 10.1109/IPDPS.2008.4536130</identifier><language>eng</language><publisher>IEEE</publisher><subject>Concurrent computing ; Control systems ; Labeling ; Network topology ; Protocols ; Resource management ; Scheduling algorithm ; Transmitters ; Wireless networks</subject><ispartof>2008 IEEE International Symposium on Parallel and Distributed Processing, 2008, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4536130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4536130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boulinier, C.</creatorcontrib><creatorcontrib>Petit, F.</creatorcontrib><title>Self-stabilizing wavelets and ϱ-hops coordination</title><title>2008 IEEE International Symposium on Parallel and Distributed Processing</title><addtitle>IPDPS</addtitle><description>In this paper, we first introduce a simple tool called the wavelet or sigma-wavelet scheme. Wavelets deal with coordination among processes which are at most sigma hops away of each other. We propose a self-stabilizing solution for this scheme. Our solution requires no underlying structure and works in arbitrary anonymous settings, i.e., where process identifiers are not required. We show that our solution provides a simple and generic self-stabilizing sigma-infimum computation. Next, we present a self-stabilizing sigma-barrier synchronization protocol based on the wavelet scheme. We show that our protocol provides an efficient device in the design of local coordination problems at distance sigma, such as the sigma-local resource allocation (LRA). In particular, we propose a solution for the popular sigma-local mutual exclusion (LME) problem. The solution to sigma-LME also provides a transformer to transform algorithms written under sigma-central daemon into algorithms working with any distributed daemon.</description><subject>Concurrent computing</subject><subject>Control systems</subject><subject>Labeling</subject><subject>Network topology</subject><subject>Protocols</subject><subject>Resource management</subject><subject>Scheduling algorithm</subject><subject>Transmitters</subject><subject>Wireless networks</subject><issn>1530-2075</issn><isbn>1424416930</isbn><isbn>9781424416936</isbn><isbn>1424416949</isbn><isbn>9781424416943</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj11KAzEUhSMq2NZuQF9mAxlvcpNx8ij1r1BoYXwv-bnRyDhTJoOiu3IlbsmCBc_L4Xs4HxzGLgSUQoC5Wm5uN00pAepSaawEwhGbCiWVEpVR5vgfEE7YRGgELuFan7F5zq-wz34mFU6YbKiNPI_WpTZ9pe65-LDv1NKYC9uF4uebv_S7XPi-H0Lq7Jj67pydRttmmh96xpr7u6fFI1-tH5aLmxVPBkYejHKqAudqRzLWaAWZiE7qWAVjKABGg6IG9F57EYMF77xUwWJAjxpn7PLPmohouxvSmx0-t4e3-AvypEgA</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Boulinier, C.</creator><creator>Petit, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200804</creationdate><title>Self-stabilizing wavelets and ϱ-hops coordination</title><author>Boulinier, C. ; Petit, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d94b460bb8be2f83a1e9f3b25f6d99ed03f931803cc5c1fda0cbc24da3d3c353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Concurrent computing</topic><topic>Control systems</topic><topic>Labeling</topic><topic>Network topology</topic><topic>Protocols</topic><topic>Resource management</topic><topic>Scheduling algorithm</topic><topic>Transmitters</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Boulinier, C.</creatorcontrib><creatorcontrib>Petit, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boulinier, C.</au><au>Petit, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-stabilizing wavelets and ϱ-hops coordination</atitle><btitle>2008 IEEE International Symposium on Parallel and Distributed Processing</btitle><stitle>IPDPS</stitle><date>2008-04</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1530-2075</issn><isbn>1424416930</isbn><isbn>9781424416936</isbn><eisbn>1424416949</eisbn><eisbn>9781424416943</eisbn><abstract>In this paper, we first introduce a simple tool called the wavelet or sigma-wavelet scheme. Wavelets deal with coordination among processes which are at most sigma hops away of each other. We propose a self-stabilizing solution for this scheme. Our solution requires no underlying structure and works in arbitrary anonymous settings, i.e., where process identifiers are not required. We show that our solution provides a simple and generic self-stabilizing sigma-infimum computation. Next, we present a self-stabilizing sigma-barrier synchronization protocol based on the wavelet scheme. We show that our protocol provides an efficient device in the design of local coordination problems at distance sigma, such as the sigma-local resource allocation (LRA). In particular, we propose a solution for the popular sigma-local mutual exclusion (LME) problem. The solution to sigma-LME also provides a transformer to transform algorithms written under sigma-central daemon into algorithms working with any distributed daemon.</abstract><pub>IEEE</pub><doi>10.1109/IPDPS.2008.4536130</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-2075
ispartof 2008 IEEE International Symposium on Parallel and Distributed Processing, 2008, p.1-8
issn 1530-2075
language eng
recordid cdi_ieee_primary_4536130
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Concurrent computing
Control systems
Labeling
Network topology
Protocols
Resource management
Scheduling algorithm
Transmitters
Wireless networks
title Self-stabilizing wavelets and ϱ-hops coordination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-stabilizing%20wavelets%20and%20%CF%B1-hops%20coordination&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Parallel%20and%20Distributed%20Processing&rft.au=Boulinier,%20C.&rft.date=2008-04&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1530-2075&rft.isbn=1424416930&rft.isbn_list=9781424416936&rft_id=info:doi/10.1109/IPDPS.2008.4536130&rft_dat=%3Cieee_6IE%3E4536130%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416949&rft.eisbn_list=9781424416943&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4536130&rfr_iscdi=true