Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle

In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Syed, F.U., Filev, D., Hao Ying
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Syed, F.U.
Filev, D.
Hao Ying
description In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.
doi_str_mv 10.1109/NAFIPS.2008.4531275
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4531275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4531275</ieee_id><sourcerecordid>4531275</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c63a73cb628148a6a619ad25cee816cb1cb2ee405b88a54260d01618bbcb43523</originalsourceid><addsrcrecordid>eNpVUM1KAzEYjEhBrfsEvXwv0Jovm2Szx1K6tlBU3OK1JNmvGNmfkl0L-_ZW7MW5DAPDMDOMzZAvEHn-9LIstm_lQnBuFlKlKDJ1w5I8MyiFlCJVAm__aZQT9vBrz7kwytyxpO-_-AVSKoXinpXvZGsYQkOwrM6h7-II5dgP1MCxi1B8Uw1r37VdM8K2OcXuTA21A4QWLGxGF0MF65r8EIOHD_oMvqZHNjnauqfkylO2L9b71Wa-e33erpa7ecj5MPc6tVnqnRaXtsZqqzG3lVCeyKD2Dr0TRJIrZ4xVUmhecdRonPNOXpamUzb7iw1EdDjF0Ng4Hq63pD-evFOZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Syed, F.U. ; Filev, D. ; Hao Ying</creator><creatorcontrib>Syed, F.U. ; Filev, D. ; Hao Ying</creatorcontrib><description>In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.</description><identifier>ISBN: 9781424423514</identifier><identifier>ISBN: 1424423511</identifier><identifier>EISBN: 9781424423521</identifier><identifier>EISBN: 142442352X</identifier><identifier>DOI: 10.1109/NAFIPS.2008.4531275</identifier><identifier>LCCN: 2008902858</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Automotive engineering ; Engines ; Feedback ; Fuel economy ; Hybrid electric vehicles ; Real time systems ; Road safety ; Vehicle driving ; Vehicle safety</subject><ispartof>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4531275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4531275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Syed, F.U.</creatorcontrib><creatorcontrib>Filev, D.</creatorcontrib><creatorcontrib>Hao Ying</creatorcontrib><title>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</title><title>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</title><addtitle>NAFIPS</addtitle><description>In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.</description><subject>Acceleration</subject><subject>Automotive engineering</subject><subject>Engines</subject><subject>Feedback</subject><subject>Fuel economy</subject><subject>Hybrid electric vehicles</subject><subject>Real time systems</subject><subject>Road safety</subject><subject>Vehicle driving</subject><subject>Vehicle safety</subject><isbn>9781424423514</isbn><isbn>1424423511</isbn><isbn>9781424423521</isbn><isbn>142442352X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1KAzEYjEhBrfsEvXwv0Jovm2Szx1K6tlBU3OK1JNmvGNmfkl0L-_ZW7MW5DAPDMDOMzZAvEHn-9LIstm_lQnBuFlKlKDJ1w5I8MyiFlCJVAm__aZQT9vBrz7kwytyxpO-_-AVSKoXinpXvZGsYQkOwrM6h7-II5dgP1MCxi1B8Uw1r37VdM8K2OcXuTA21A4QWLGxGF0MF65r8EIOHD_oMvqZHNjnauqfkylO2L9b71Wa-e33erpa7ecj5MPc6tVnqnRaXtsZqqzG3lVCeyKD2Dr0TRJIrZ4xVUmhecdRonPNOXpamUzb7iw1EdDjF0Ng4Hq63pD-evFOZ</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Syed, F.U.</creator><creator>Filev, D.</creator><creator>Hao Ying</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</title><author>Syed, F.U. ; Filev, D. ; Hao Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c63a73cb628148a6a619ad25cee816cb1cb2ee405b88a54260d01618bbcb43523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Automotive engineering</topic><topic>Engines</topic><topic>Feedback</topic><topic>Fuel economy</topic><topic>Hybrid electric vehicles</topic><topic>Real time systems</topic><topic>Road safety</topic><topic>Vehicle driving</topic><topic>Vehicle safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Syed, F.U.</creatorcontrib><creatorcontrib>Filev, D.</creatorcontrib><creatorcontrib>Hao Ying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syed, F.U.</au><au>Filev, D.</au><au>Hao Ying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</atitle><btitle>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</btitle><stitle>NAFIPS</stitle><date>2008-05</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424423514</isbn><isbn>1424423511</isbn><eisbn>9781424423521</eisbn><eisbn>142442352X</eisbn><abstract>In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.</abstract><pub>IEEE</pub><doi>10.1109/NAFIPS.2008.4531275</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424423514
ispartof NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6
issn
language eng
recordid cdi_ieee_primary_4531275
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Automotive engineering
Engines
Feedback
Fuel economy
Hybrid electric vehicles
Real time systems
Road safety
Vehicle driving
Vehicle safety
title Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real%20time%20Advisory%20System%20for%20Fuel%20Economy%20Improvement%20in%20a%20Hybrid%20Electric%20Vehicle&rft.btitle=NAFIPS%202008%20-%202008%20Annual%20Meeting%20of%20the%20North%20American%20Fuzzy%20Information%20Processing%20Society&rft.au=Syed,%20F.U.&rft.date=2008-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424423514&rft.isbn_list=1424423511&rft_id=info:doi/10.1109/NAFIPS.2008.4531275&rft_dat=%3Cieee_6IE%3E4531275%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423521&rft.eisbn_list=142442352X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4531275&rfr_iscdi=true