Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle
In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Syed, F.U. Filev, D. Hao Ying |
description | In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle. |
doi_str_mv | 10.1109/NAFIPS.2008.4531275 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4531275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4531275</ieee_id><sourcerecordid>4531275</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c63a73cb628148a6a619ad25cee816cb1cb2ee405b88a54260d01618bbcb43523</originalsourceid><addsrcrecordid>eNpVUM1KAzEYjEhBrfsEvXwv0Jovm2Szx1K6tlBU3OK1JNmvGNmfkl0L-_ZW7MW5DAPDMDOMzZAvEHn-9LIstm_lQnBuFlKlKDJ1w5I8MyiFlCJVAm__aZQT9vBrz7kwytyxpO-_-AVSKoXinpXvZGsYQkOwrM6h7-II5dgP1MCxi1B8Uw1r37VdM8K2OcXuTA21A4QWLGxGF0MF65r8EIOHD_oMvqZHNjnauqfkylO2L9b71Wa-e33erpa7ecj5MPc6tVnqnRaXtsZqqzG3lVCeyKD2Dr0TRJIrZ4xVUmhecdRonPNOXpamUzb7iw1EdDjF0Ng4Hq63pD-evFOZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Syed, F.U. ; Filev, D. ; Hao Ying</creator><creatorcontrib>Syed, F.U. ; Filev, D. ; Hao Ying</creatorcontrib><description>In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.</description><identifier>ISBN: 9781424423514</identifier><identifier>ISBN: 1424423511</identifier><identifier>EISBN: 9781424423521</identifier><identifier>EISBN: 142442352X</identifier><identifier>DOI: 10.1109/NAFIPS.2008.4531275</identifier><identifier>LCCN: 2008902858</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Automotive engineering ; Engines ; Feedback ; Fuel economy ; Hybrid electric vehicles ; Real time systems ; Road safety ; Vehicle driving ; Vehicle safety</subject><ispartof>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4531275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4531275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Syed, F.U.</creatorcontrib><creatorcontrib>Filev, D.</creatorcontrib><creatorcontrib>Hao Ying</creatorcontrib><title>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</title><title>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</title><addtitle>NAFIPS</addtitle><description>In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.</description><subject>Acceleration</subject><subject>Automotive engineering</subject><subject>Engines</subject><subject>Feedback</subject><subject>Fuel economy</subject><subject>Hybrid electric vehicles</subject><subject>Real time systems</subject><subject>Road safety</subject><subject>Vehicle driving</subject><subject>Vehicle safety</subject><isbn>9781424423514</isbn><isbn>1424423511</isbn><isbn>9781424423521</isbn><isbn>142442352X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1KAzEYjEhBrfsEvXwv0Jovm2Szx1K6tlBU3OK1JNmvGNmfkl0L-_ZW7MW5DAPDMDOMzZAvEHn-9LIstm_lQnBuFlKlKDJ1w5I8MyiFlCJVAm__aZQT9vBrz7kwytyxpO-_-AVSKoXinpXvZGsYQkOwrM6h7-II5dgP1MCxi1B8Uw1r37VdM8K2OcXuTA21A4QWLGxGF0MF65r8EIOHD_oMvqZHNjnauqfkylO2L9b71Wa-e33erpa7ecj5MPc6tVnqnRaXtsZqqzG3lVCeyKD2Dr0TRJIrZ4xVUmhecdRonPNOXpamUzb7iw1EdDjF0Ng4Hq63pD-evFOZ</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Syed, F.U.</creator><creator>Filev, D.</creator><creator>Hao Ying</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</title><author>Syed, F.U. ; Filev, D. ; Hao Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c63a73cb628148a6a619ad25cee816cb1cb2ee405b88a54260d01618bbcb43523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Automotive engineering</topic><topic>Engines</topic><topic>Feedback</topic><topic>Fuel economy</topic><topic>Hybrid electric vehicles</topic><topic>Real time systems</topic><topic>Road safety</topic><topic>Vehicle driving</topic><topic>Vehicle safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Syed, F.U.</creatorcontrib><creatorcontrib>Filev, D.</creatorcontrib><creatorcontrib>Hao Ying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syed, F.U.</au><au>Filev, D.</au><au>Hao Ying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle</atitle><btitle>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</btitle><stitle>NAFIPS</stitle><date>2008-05</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424423514</isbn><isbn>1424423511</isbn><eisbn>9781424423521</eisbn><eisbn>142442352X</eisbn><abstract>In this paper, we present an improved version of the advisory system for fuel economy improvement in a hybrid electric vehicle [11]. We address the competing requirements for improved fuel economy, while maintaining performance that is close to the current driving style and driver behavior. This is done by introducing a multiple-input, multiple-output rule base with a fuzzy reasoning mechanism that decomposes the space of the main factors that affect vehicle fuel economy and performance - instantaneous fuel consumption, acceleration, speed, and accelerator pedal position. This approach allows us to properly assign the boundaries of the desired accelerator pedal position that correspond to each of the specific areas, which are defined by the rules' antecedents. The system was developed and validated on the Ford (INSERT YEAR and make like SE) HEV Escape vehicle.</abstract><pub>IEEE</pub><doi>10.1109/NAFIPS.2008.4531275</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424423514 |
ispartof | NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4531275 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Automotive engineering Engines Feedback Fuel economy Hybrid electric vehicles Real time systems Road safety Vehicle driving Vehicle safety |
title | Real time Advisory System for Fuel Economy Improvement in a Hybrid Electric Vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real%20time%20Advisory%20System%20for%20Fuel%20Economy%20Improvement%20in%20a%20Hybrid%20Electric%20Vehicle&rft.btitle=NAFIPS%202008%20-%202008%20Annual%20Meeting%20of%20the%20North%20American%20Fuzzy%20Information%20Processing%20Society&rft.au=Syed,%20F.U.&rft.date=2008-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424423514&rft.isbn_list=1424423511&rft_id=info:doi/10.1109/NAFIPS.2008.4531275&rft_dat=%3Cieee_6IE%3E4531275%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423521&rft.eisbn_list=142442352X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4531275&rfr_iscdi=true |