Casting out Demons: Sanitizing Training Data for Anomaly Sensors

The efficacy of anomaly detection (AD) sensors depends heavily on the quality of the data used to train them. Artificial or contrived training data may not provide a realistic view of the deployment environment. Most realistic data sets are dirty; that is, they contain a number of attacks or anomalo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cretu, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J., Keromytis, A.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!