Least-square-based block adaptive prediction approach for lossless image coding
Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper propos...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | |
container_start_page | 188 |
container_title | |
container_volume | |
creator | Matsumura, S. Maezawa, T. Takago, D. Kato, K. Takebe, T. |
description | Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying. |
doi_str_mv | 10.1109/ECCTD.2007.4529568 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4529568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4529568</ieee_id><sourcerecordid>4529568</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-baaaaf1bee6ba572fdf0119c50f85def4ea6393d0cd7d00c92135954a374104d3</originalsourceid><addsrcrecordid>eNpFUM1KAzEYjEhBW_sCeskLbM2Xn83mKGutwkIv9VyyyZcaXbtrsgq-vSsWnMswMMwMQ8g1sBUAM7frut7drzhjeiUVN6qszsgcJJcShOT6_F-AmZH5r9HwClR5QZY5v7IJUknOykuybdDmscgfnzZh0dqMnrZd796o9XYY4xfSIaGPboz9kdphSL11LzT0iXZ9zh3mTOO7PSB1vY_HwxWZBdtlXJ54QZ4f1rv6sWi2m6f6rikiaDVORRMCtIhla5XmwQcGYJxioVIeg0RbCiM8c157xpzhIJRR0gotgUkvFuTmLzci4n5I04b0vT-9IX4Aj49SlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Least-square-based block adaptive prediction approach for lossless image coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matsumura, S. ; Maezawa, T. ; Takago, D. ; Kato, K. ; Takebe, T.</creator><creatorcontrib>Matsumura, S. ; Maezawa, T. ; Takago, D. ; Kato, K. ; Takebe, T.</creatorcontrib><description>Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.</description><identifier>ISBN: 1424413419</identifier><identifier>ISBN: 9781424413416</identifier><identifier>EISBN: 1424413427</identifier><identifier>EISBN: 9781424413423</identifier><identifier>DOI: 10.1109/ECCTD.2007.4529568</identifier><identifier>LCCN: 2007928156</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Computer errors ; Computer science ; Costs ; Digital images ; Entropy coding ; Image coding ; Internet ; Pixel ; Remote sensing</subject><ispartof>2007 18th European Conference on Circuit Theory and Design, 2007, p.188-191</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4529568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4529568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsumura, S.</creatorcontrib><creatorcontrib>Maezawa, T.</creatorcontrib><creatorcontrib>Takago, D.</creatorcontrib><creatorcontrib>Kato, K.</creatorcontrib><creatorcontrib>Takebe, T.</creatorcontrib><title>Least-square-based block adaptive prediction approach for lossless image coding</title><title>2007 18th European Conference on Circuit Theory and Design</title><addtitle>ECCTD</addtitle><description>Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.</description><subject>Biomedical imaging</subject><subject>Computer errors</subject><subject>Computer science</subject><subject>Costs</subject><subject>Digital images</subject><subject>Entropy coding</subject><subject>Image coding</subject><subject>Internet</subject><subject>Pixel</subject><subject>Remote sensing</subject><isbn>1424413419</isbn><isbn>9781424413416</isbn><isbn>1424413427</isbn><isbn>9781424413423</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1KAzEYjEhBW_sCeskLbM2Xn83mKGutwkIv9VyyyZcaXbtrsgq-vSsWnMswMMwMQ8g1sBUAM7frut7drzhjeiUVN6qszsgcJJcShOT6_F-AmZH5r9HwClR5QZY5v7IJUknOykuybdDmscgfnzZh0dqMnrZd796o9XYY4xfSIaGPboz9kdphSL11LzT0iXZ9zh3mTOO7PSB1vY_HwxWZBdtlXJ54QZ4f1rv6sWi2m6f6rikiaDVORRMCtIhla5XmwQcGYJxioVIeg0RbCiM8c157xpzhIJRR0gotgUkvFuTmLzci4n5I04b0vT-9IX4Aj49SlA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Matsumura, S.</creator><creator>Maezawa, T.</creator><creator>Takago, D.</creator><creator>Kato, K.</creator><creator>Takebe, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Least-square-based block adaptive prediction approach for lossless image coding</title><author>Matsumura, S. ; Maezawa, T. ; Takago, D. ; Kato, K. ; Takebe, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-baaaaf1bee6ba572fdf0119c50f85def4ea6393d0cd7d00c92135954a374104d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomedical imaging</topic><topic>Computer errors</topic><topic>Computer science</topic><topic>Costs</topic><topic>Digital images</topic><topic>Entropy coding</topic><topic>Image coding</topic><topic>Internet</topic><topic>Pixel</topic><topic>Remote sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsumura, S.</creatorcontrib><creatorcontrib>Maezawa, T.</creatorcontrib><creatorcontrib>Takago, D.</creatorcontrib><creatorcontrib>Kato, K.</creatorcontrib><creatorcontrib>Takebe, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsumura, S.</au><au>Maezawa, T.</au><au>Takago, D.</au><au>Kato, K.</au><au>Takebe, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Least-square-based block adaptive prediction approach for lossless image coding</atitle><btitle>2007 18th European Conference on Circuit Theory and Design</btitle><stitle>ECCTD</stitle><date>2007-08</date><risdate>2007</risdate><spage>188</spage><epage>191</epage><pages>188-191</pages><isbn>1424413419</isbn><isbn>9781424413416</isbn><eisbn>1424413427</eisbn><eisbn>9781424413423</eisbn><abstract>Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.</abstract><pub>IEEE</pub><doi>10.1109/ECCTD.2007.4529568</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424413419 |
ispartof | 2007 18th European Conference on Circuit Theory and Design, 2007, p.188-191 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4529568 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Computer errors Computer science Costs Digital images Entropy coding Image coding Internet Pixel Remote sensing |
title | Least-square-based block adaptive prediction approach for lossless image coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Least-square-based%20block%20adaptive%20prediction%20approach%20for%20lossless%20image%20coding&rft.btitle=2007%2018th%20European%20Conference%20on%20Circuit%20Theory%20and%20Design&rft.au=Matsumura,%20S.&rft.date=2007-08&rft.spage=188&rft.epage=191&rft.pages=188-191&rft.isbn=1424413419&rft.isbn_list=9781424413416&rft_id=info:doi/10.1109/ECCTD.2007.4529568&rft_dat=%3Cieee_6IE%3E4529568%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413427&rft.eisbn_list=9781424413423&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4529568&rfr_iscdi=true |