Least-square-based block adaptive prediction approach for lossless image coding

Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matsumura, S., Maezawa, T., Takago, D., Kato, K., Takebe, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue
container_start_page 188
container_title
container_volume
creator Matsumura, S.
Maezawa, T.
Takago, D.
Kato, K.
Takebe, T.
description Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.
doi_str_mv 10.1109/ECCTD.2007.4529568
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4529568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4529568</ieee_id><sourcerecordid>4529568</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-baaaaf1bee6ba572fdf0119c50f85def4ea6393d0cd7d00c92135954a374104d3</originalsourceid><addsrcrecordid>eNpFUM1KAzEYjEhBW_sCeskLbM2Xn83mKGutwkIv9VyyyZcaXbtrsgq-vSsWnMswMMwMQ8g1sBUAM7frut7drzhjeiUVN6qszsgcJJcShOT6_F-AmZH5r9HwClR5QZY5v7IJUknOykuybdDmscgfnzZh0dqMnrZd796o9XYY4xfSIaGPboz9kdphSL11LzT0iXZ9zh3mTOO7PSB1vY_HwxWZBdtlXJ54QZ4f1rv6sWi2m6f6rikiaDVORRMCtIhla5XmwQcGYJxioVIeg0RbCiM8c157xpzhIJRR0gotgUkvFuTmLzci4n5I04b0vT-9IX4Aj49SlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Least-square-based block adaptive prediction approach for lossless image coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matsumura, S. ; Maezawa, T. ; Takago, D. ; Kato, K. ; Takebe, T.</creator><creatorcontrib>Matsumura, S. ; Maezawa, T. ; Takago, D. ; Kato, K. ; Takebe, T.</creatorcontrib><description>Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.</description><identifier>ISBN: 1424413419</identifier><identifier>ISBN: 9781424413416</identifier><identifier>EISBN: 1424413427</identifier><identifier>EISBN: 9781424413423</identifier><identifier>DOI: 10.1109/ECCTD.2007.4529568</identifier><identifier>LCCN: 2007928156</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Computer errors ; Computer science ; Costs ; Digital images ; Entropy coding ; Image coding ; Internet ; Pixel ; Remote sensing</subject><ispartof>2007 18th European Conference on Circuit Theory and Design, 2007, p.188-191</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4529568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4529568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsumura, S.</creatorcontrib><creatorcontrib>Maezawa, T.</creatorcontrib><creatorcontrib>Takago, D.</creatorcontrib><creatorcontrib>Kato, K.</creatorcontrib><creatorcontrib>Takebe, T.</creatorcontrib><title>Least-square-based block adaptive prediction approach for lossless image coding</title><title>2007 18th European Conference on Circuit Theory and Design</title><addtitle>ECCTD</addtitle><description>Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.</description><subject>Biomedical imaging</subject><subject>Computer errors</subject><subject>Computer science</subject><subject>Costs</subject><subject>Digital images</subject><subject>Entropy coding</subject><subject>Image coding</subject><subject>Internet</subject><subject>Pixel</subject><subject>Remote sensing</subject><isbn>1424413419</isbn><isbn>9781424413416</isbn><isbn>1424413427</isbn><isbn>9781424413423</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1KAzEYjEhBW_sCeskLbM2Xn83mKGutwkIv9VyyyZcaXbtrsgq-vSsWnMswMMwMQ8g1sBUAM7frut7drzhjeiUVN6qszsgcJJcShOT6_F-AmZH5r9HwClR5QZY5v7IJUknOykuybdDmscgfnzZh0dqMnrZd796o9XYY4xfSIaGPboz9kdphSL11LzT0iXZ9zh3mTOO7PSB1vY_HwxWZBdtlXJ54QZ4f1rv6sWi2m6f6rikiaDVORRMCtIhla5XmwQcGYJxioVIeg0RbCiM8c157xpzhIJRR0gotgUkvFuTmLzci4n5I04b0vT-9IX4Aj49SlA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Matsumura, S.</creator><creator>Maezawa, T.</creator><creator>Takago, D.</creator><creator>Kato, K.</creator><creator>Takebe, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Least-square-based block adaptive prediction approach for lossless image coding</title><author>Matsumura, S. ; Maezawa, T. ; Takago, D. ; Kato, K. ; Takebe, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-baaaaf1bee6ba572fdf0119c50f85def4ea6393d0cd7d00c92135954a374104d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomedical imaging</topic><topic>Computer errors</topic><topic>Computer science</topic><topic>Costs</topic><topic>Digital images</topic><topic>Entropy coding</topic><topic>Image coding</topic><topic>Internet</topic><topic>Pixel</topic><topic>Remote sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsumura, S.</creatorcontrib><creatorcontrib>Maezawa, T.</creatorcontrib><creatorcontrib>Takago, D.</creatorcontrib><creatorcontrib>Kato, K.</creatorcontrib><creatorcontrib>Takebe, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsumura, S.</au><au>Maezawa, T.</au><au>Takago, D.</au><au>Kato, K.</au><au>Takebe, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Least-square-based block adaptive prediction approach for lossless image coding</atitle><btitle>2007 18th European Conference on Circuit Theory and Design</btitle><stitle>ECCTD</stitle><date>2007-08</date><risdate>2007</risdate><spage>188</spage><epage>191</epage><pages>188-191</pages><isbn>1424413419</isbn><isbn>9781424413416</isbn><eisbn>1424413427</eisbn><eisbn>9781424413423</eisbn><abstract>Natural images often consist of many different regions in intensity variation feature. The block adaptive predictors in lossless image coding often show considerably different entropies of block prediction errors between the horizontal scanning and the vertical one, block by block. This paper proposes a block adaptive prediction approach, in which the least-square-based predictors are designed for both horizontal scanning and vertical scanning for each block. Then the sums of the absolute prediction errors for both scanning directions are compared, and the scanning giving lower sum is selected for its block. In the error image, variances of errors for each block are often spread in some wide range. Therefore, in entropy coding stage, each block is classified into several classes by its error variance and the range coders are utilized, class by class, giving lower entropies than that of no classifying.</abstract><pub>IEEE</pub><doi>10.1109/ECCTD.2007.4529568</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424413419
ispartof 2007 18th European Conference on Circuit Theory and Design, 2007, p.188-191
issn
language eng
recordid cdi_ieee_primary_4529568
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Computer errors
Computer science
Costs
Digital images
Entropy coding
Image coding
Internet
Pixel
Remote sensing
title Least-square-based block adaptive prediction approach for lossless image coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Least-square-based%20block%20adaptive%20prediction%20approach%20for%20lossless%20image%20coding&rft.btitle=2007%2018th%20European%20Conference%20on%20Circuit%20Theory%20and%20Design&rft.au=Matsumura,%20S.&rft.date=2007-08&rft.spage=188&rft.epage=191&rft.pages=188-191&rft.isbn=1424413419&rft.isbn_list=9781424413416&rft_id=info:doi/10.1109/ECCTD.2007.4529568&rft_dat=%3Cieee_6IE%3E4529568%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413427&rft.eisbn_list=9781424413423&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4529568&rfr_iscdi=true