False Alarm Mitigation of Vibration Diagnostic Systems

False alarms in legacy aircraft diagnostic systems have negatively impacted fleet maintenance costs and mission readiness. As the industry moves towards more advanced prognostic and health management (PHM) solutions, a reduction in false alarms is needed to reduce the cost and readiness burdens that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Byington, C.S., Watson, M.J., Sanket Amin, Begin, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title
container_volume
creator Byington, C.S.
Watson, M.J.
Sanket Amin
Begin, M.
description False alarms in legacy aircraft diagnostic systems have negatively impacted fleet maintenance costs and mission readiness. As the industry moves towards more advanced prognostic and health management (PHM) solutions, a reduction in false alarms is needed to reduce the cost and readiness burdens that have plagued legacy systems. It is therefore important to understand why these false alarms occur and how they are generated so appropriate mitigation solutions can be included in next-generation diagnostic systems. This paper examines four major sources of false alarms in the development of vibration diagnostics (faulty sensor performance, transient system operating conditions, improper health indicator selection, and inadequate fault detection logic) and details a solution designed to mitigate their impact. An overview of the developed false alarm statistics toolbox for PHM (FAST PHM™) software is also provided to illustrate how the software guides design engineers through the processes of verifying data, processing for diagnostic features, analyzing feature performances, developing "virtual" features through fusion, and deriving statistically optimized feature thresholds. The developed approach will improve the overall performance, robustness, and reliability of vibration diagnostic and prognostics systems.
doi_str_mv 10.1109/AERO.2008.4526620
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4526620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4526620</ieee_id><sourcerecordid>33564071</sourcerecordid><originalsourceid>FETCH-LOGICAL-i121t-cb6f33b32db35eddbf614042bebd1e92804b1973fb72cb31e4a41ded643ebd083</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhtcvsK3-APGSk7fUnZnNJjmG2qpQKfiFt7CbTMpK0tRseui_N9KCp5fhfZ5hGCFuQE4BZHqfzV9XU5QymaoItUZ5IsagUClQSQKnYoRpqkOkKDn7L2I6F6PBjkJC-roUY--_pUSJiRwJvTC15yCrTdcEL653a9O7dhO0VfDpbHcYHpxZb1rfuyJ42_ueG38lLqo_8fqYE_GxmL_PnsLl6vF5li1DBwh9WFhdEVnC0lLEZWkrDUoqtGxL4HS4QFlIY6psjIUlYGUUlFxqRQMhE5qIu8Pebdf-7Nj3eeN8wXVtNtzufE4UaSVjGMDbA-iYOd92rjHdPj9-iX4BTPRXBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>33564071</pqid></control><display><type>conference_proceeding</type><title>False Alarm Mitigation of Vibration Diagnostic Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Byington, C.S. ; Watson, M.J. ; Sanket Amin ; Begin, M.</creator><creatorcontrib>Byington, C.S. ; Watson, M.J. ; Sanket Amin ; Begin, M.</creatorcontrib><description>False alarms in legacy aircraft diagnostic systems have negatively impacted fleet maintenance costs and mission readiness. As the industry moves towards more advanced prognostic and health management (PHM) solutions, a reduction in false alarms is needed to reduce the cost and readiness burdens that have plagued legacy systems. It is therefore important to understand why these false alarms occur and how they are generated so appropriate mitigation solutions can be included in next-generation diagnostic systems. This paper examines four major sources of false alarms in the development of vibration diagnostics (faulty sensor performance, transient system operating conditions, improper health indicator selection, and inadequate fault detection logic) and details a solution designed to mitigate their impact. An overview of the developed false alarm statistics toolbox for PHM (FAST PHM™) software is also provided to illustrate how the software guides design engineers through the processes of verifying data, processing for diagnostic features, analyzing feature performances, developing "virtual" features through fusion, and deriving statistically optimized feature thresholds. The developed approach will improve the overall performance, robustness, and reliability of vibration diagnostic and prognostics systems.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 1424414873</identifier><identifier>ISBN: 9781424414871</identifier><identifier>EISSN: 2996-2358</identifier><identifier>EISBN: 1424414881</identifier><identifier>EISBN: 9781424414888</identifier><identifier>DOI: 10.1109/AERO.2008.4526620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aircraft ; Costs ; Fault detection ; Logic design ; Prognostics and health management ; Sensor systems ; Software design ; Software performance ; Software tools ; Statistical analysis</subject><ispartof>2008 IEEE Aerospace Conference, 2008, p.1-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4526620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4526620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Byington, C.S.</creatorcontrib><creatorcontrib>Watson, M.J.</creatorcontrib><creatorcontrib>Sanket Amin</creatorcontrib><creatorcontrib>Begin, M.</creatorcontrib><title>False Alarm Mitigation of Vibration Diagnostic Systems</title><title>2008 IEEE Aerospace Conference</title><addtitle>AERO</addtitle><description>False alarms in legacy aircraft diagnostic systems have negatively impacted fleet maintenance costs and mission readiness. As the industry moves towards more advanced prognostic and health management (PHM) solutions, a reduction in false alarms is needed to reduce the cost and readiness burdens that have plagued legacy systems. It is therefore important to understand why these false alarms occur and how they are generated so appropriate mitigation solutions can be included in next-generation diagnostic systems. This paper examines four major sources of false alarms in the development of vibration diagnostics (faulty sensor performance, transient system operating conditions, improper health indicator selection, and inadequate fault detection logic) and details a solution designed to mitigate their impact. An overview of the developed false alarm statistics toolbox for PHM (FAST PHM™) software is also provided to illustrate how the software guides design engineers through the processes of verifying data, processing for diagnostic features, analyzing feature performances, developing "virtual" features through fusion, and deriving statistically optimized feature thresholds. The developed approach will improve the overall performance, robustness, and reliability of vibration diagnostic and prognostics systems.</description><subject>Aircraft</subject><subject>Costs</subject><subject>Fault detection</subject><subject>Logic design</subject><subject>Prognostics and health management</subject><subject>Sensor systems</subject><subject>Software design</subject><subject>Software performance</subject><subject>Software tools</subject><subject>Statistical analysis</subject><issn>1095-323X</issn><issn>2996-2358</issn><isbn>1424414873</isbn><isbn>9781424414871</isbn><isbn>1424414881</isbn><isbn>9781424414888</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AQhtcvsK3-APGSk7fUnZnNJjmG2qpQKfiFt7CbTMpK0tRseui_N9KCp5fhfZ5hGCFuQE4BZHqfzV9XU5QymaoItUZ5IsagUClQSQKnYoRpqkOkKDn7L2I6F6PBjkJC-roUY--_pUSJiRwJvTC15yCrTdcEL653a9O7dhO0VfDpbHcYHpxZb1rfuyJ42_ueG38lLqo_8fqYE_GxmL_PnsLl6vF5li1DBwh9WFhdEVnC0lLEZWkrDUoqtGxL4HS4QFlIY6psjIUlYGUUlFxqRQMhE5qIu8Pebdf-7Nj3eeN8wXVtNtzufE4UaSVjGMDbA-iYOd92rjHdPj9-iX4BTPRXBA</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Byington, C.S.</creator><creator>Watson, M.J.</creator><creator>Sanket Amin</creator><creator>Begin, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2008</creationdate><title>False Alarm Mitigation of Vibration Diagnostic Systems</title><author>Byington, C.S. ; Watson, M.J. ; Sanket Amin ; Begin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i121t-cb6f33b32db35eddbf614042bebd1e92804b1973fb72cb31e4a41ded643ebd083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aircraft</topic><topic>Costs</topic><topic>Fault detection</topic><topic>Logic design</topic><topic>Prognostics and health management</topic><topic>Sensor systems</topic><topic>Software design</topic><topic>Software performance</topic><topic>Software tools</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Byington, C.S.</creatorcontrib><creatorcontrib>Watson, M.J.</creatorcontrib><creatorcontrib>Sanket Amin</creatorcontrib><creatorcontrib>Begin, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Byington, C.S.</au><au>Watson, M.J.</au><au>Sanket Amin</au><au>Begin, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>False Alarm Mitigation of Vibration Diagnostic Systems</atitle><btitle>2008 IEEE Aerospace Conference</btitle><stitle>AERO</stitle><date>2008</date><risdate>2008</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1095-323X</issn><eissn>2996-2358</eissn><isbn>1424414873</isbn><isbn>9781424414871</isbn><eisbn>1424414881</eisbn><eisbn>9781424414888</eisbn><abstract>False alarms in legacy aircraft diagnostic systems have negatively impacted fleet maintenance costs and mission readiness. As the industry moves towards more advanced prognostic and health management (PHM) solutions, a reduction in false alarms is needed to reduce the cost and readiness burdens that have plagued legacy systems. It is therefore important to understand why these false alarms occur and how they are generated so appropriate mitigation solutions can be included in next-generation diagnostic systems. This paper examines four major sources of false alarms in the development of vibration diagnostics (faulty sensor performance, transient system operating conditions, improper health indicator selection, and inadequate fault detection logic) and details a solution designed to mitigate their impact. An overview of the developed false alarm statistics toolbox for PHM (FAST PHM™) software is also provided to illustrate how the software guides design engineers through the processes of verifying data, processing for diagnostic features, analyzing feature performances, developing "virtual" features through fusion, and deriving statistically optimized feature thresholds. The developed approach will improve the overall performance, robustness, and reliability of vibration diagnostic and prognostics systems.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2008.4526620</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-323X
ispartof 2008 IEEE Aerospace Conference, 2008, p.1-11
issn 1095-323X
2996-2358
language eng
recordid cdi_ieee_primary_4526620
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aircraft
Costs
Fault detection
Logic design
Prognostics and health management
Sensor systems
Software design
Software performance
Software tools
Statistical analysis
title False Alarm Mitigation of Vibration Diagnostic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=False%20Alarm%20Mitigation%20of%20Vibration%20Diagnostic%20Systems&rft.btitle=2008%20IEEE%20Aerospace%20Conference&rft.au=Byington,%20C.S.&rft.date=2008&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1095-323X&rft.eissn=2996-2358&rft.isbn=1424414873&rft.isbn_list=9781424414871&rft_id=info:doi/10.1109/AERO.2008.4526620&rft_dat=%3Cproquest_6IE%3E33564071%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424414881&rft.eisbn_list=9781424414888&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33564071&rft_id=info:pmid/&rft_ieee_id=4526620&rfr_iscdi=true