Approximate Solution Research of State Equation for Controlled Nonlinear Systems
Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state eq...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1787 |
---|---|
container_issue | |
container_start_page | 1784 |
container_title | |
container_volume | |
creator | Cao Shaozhong Yang Guowei Tu Xuyan |
description | Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method. |
doi_str_mv | 10.1109/ICNSC.2008.4525513 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4525513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4525513</ieee_id><sourcerecordid>4525513</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-649f2ee22c52ac59705c1594d58a36329c3aa68459e866e80e1ffd9643da66d03</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXJGCtuYF9LIvkLh_32b3WELVQqliFLyVJfkWI2k2blKwb2_UOpdhmGFghpBrzjLOmb1dF9uyyARjJlMgALg8I4nNDVdCKa6NNudk_i_gbUbmUza3UrMcLkgyDB9sggIJIC_J07LvY_hq9m5EWob2MDaho884oIvVOw2eluOPtfo8uF_Lh0iL0I0xtC3WdBu6tummMC2Pw4j74YrMvGsHTE68IK93q5fiId083q-L5SZteA5jqpX1AlGICoSrwOYMKg5W1WCc1FLYSjqnjQKLRms0DLn3tdVK1k7rmskFufnrbRBx18dpQTzuTo_Ib3SYUqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cao Shaozhong ; Yang Guowei ; Tu Xuyan</creator><creatorcontrib>Cao Shaozhong ; Yang Guowei ; Tu Xuyan</creatorcontrib><description>Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.</description><identifier>ISBN: 142441685X</identifier><identifier>ISBN: 9781424416851</identifier><identifier>EISBN: 9781424416868</identifier><identifier>EISBN: 1424416868</identifier><identifier>DOI: 10.1109/ICNSC.2008.4525513</identifier><identifier>LCCN: 2007936075</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Control systems ; Control theory ; Differential equations ; Integral equations ; Nonlinear control systems ; Nonlinear equations ; Nonlinear systems ; Taylor series ; Vectors</subject><ispartof>2008 IEEE International Conference on Networking, Sensing and Control, 2008, p.1784-1787</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4525513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4525513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao Shaozhong</creatorcontrib><creatorcontrib>Yang Guowei</creatorcontrib><creatorcontrib>Tu Xuyan</creatorcontrib><title>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</title><title>2008 IEEE International Conference on Networking, Sensing and Control</title><addtitle>ICNSC</addtitle><description>Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.</description><subject>Approximation methods</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Integral equations</subject><subject>Nonlinear control systems</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Taylor series</subject><subject>Vectors</subject><isbn>142441685X</isbn><isbn>9781424416851</isbn><isbn>9781424416868</isbn><isbn>1424416868</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1Kw0AYXJGCtuYF9LIvkLh_32b3WELVQqliFLyVJfkWI2k2blKwb2_UOpdhmGFghpBrzjLOmb1dF9uyyARjJlMgALg8I4nNDVdCKa6NNudk_i_gbUbmUza3UrMcLkgyDB9sggIJIC_J07LvY_hq9m5EWob2MDaho884oIvVOw2eluOPtfo8uF_Lh0iL0I0xtC3WdBu6tummMC2Pw4j74YrMvGsHTE68IK93q5fiId083q-L5SZteA5jqpX1AlGICoSrwOYMKg5W1WCc1FLYSjqnjQKLRms0DLn3tdVK1k7rmskFufnrbRBx18dpQTzuTo_Ib3SYUqk</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Cao Shaozhong</creator><creator>Yang Guowei</creator><creator>Tu Xuyan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200804</creationdate><title>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</title><author>Cao Shaozhong ; Yang Guowei ; Tu Xuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-649f2ee22c52ac59705c1594d58a36329c3aa68459e866e80e1ffd9643da66d03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation methods</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Integral equations</topic><topic>Nonlinear control systems</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Taylor series</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao Shaozhong</creatorcontrib><creatorcontrib>Yang Guowei</creatorcontrib><creatorcontrib>Tu Xuyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao Shaozhong</au><au>Yang Guowei</au><au>Tu Xuyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</atitle><btitle>2008 IEEE International Conference on Networking, Sensing and Control</btitle><stitle>ICNSC</stitle><date>2008-04</date><risdate>2008</risdate><spage>1784</spage><epage>1787</epage><pages>1784-1787</pages><isbn>142441685X</isbn><isbn>9781424416851</isbn><eisbn>9781424416868</eisbn><eisbn>1424416868</eisbn><abstract>Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.</abstract><pub>IEEE</pub><doi>10.1109/ICNSC.2008.4525513</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142441685X |
ispartof | 2008 IEEE International Conference on Networking, Sensing and Control, 2008, p.1784-1787 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4525513 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Control systems Control theory Differential equations Integral equations Nonlinear control systems Nonlinear equations Nonlinear systems Taylor series Vectors |
title | Approximate Solution Research of State Equation for Controlled Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximate%20Solution%20Research%20of%20State%20Equation%20for%20Controlled%20Nonlinear%20Systems&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Networking,%20Sensing%20and%20Control&rft.au=Cao%20Shaozhong&rft.date=2008-04&rft.spage=1784&rft.epage=1787&rft.pages=1784-1787&rft.isbn=142441685X&rft.isbn_list=9781424416851&rft_id=info:doi/10.1109/ICNSC.2008.4525513&rft_dat=%3Cieee_6IE%3E4525513%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416868&rft.eisbn_list=1424416868&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4525513&rfr_iscdi=true |