Approximate Solution Research of State Equation for Controlled Nonlinear Systems

Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao Shaozhong, Yang Guowei, Tu Xuyan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1787
container_issue
container_start_page 1784
container_title
container_volume
creator Cao Shaozhong
Yang Guowei
Tu Xuyan
description Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.
doi_str_mv 10.1109/ICNSC.2008.4525513
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4525513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4525513</ieee_id><sourcerecordid>4525513</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-649f2ee22c52ac59705c1594d58a36329c3aa68459e866e80e1ffd9643da66d03</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXJGCtuYF9LIvkLh_32b3WELVQqliFLyVJfkWI2k2blKwb2_UOpdhmGFghpBrzjLOmb1dF9uyyARjJlMgALg8I4nNDVdCKa6NNudk_i_gbUbmUza3UrMcLkgyDB9sggIJIC_J07LvY_hq9m5EWob2MDaho884oIvVOw2eluOPtfo8uF_Lh0iL0I0xtC3WdBu6tummMC2Pw4j74YrMvGsHTE68IK93q5fiId083q-L5SZteA5jqpX1AlGICoSrwOYMKg5W1WCc1FLYSjqnjQKLRms0DLn3tdVK1k7rmskFufnrbRBx18dpQTzuTo_Ib3SYUqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cao Shaozhong ; Yang Guowei ; Tu Xuyan</creator><creatorcontrib>Cao Shaozhong ; Yang Guowei ; Tu Xuyan</creatorcontrib><description>Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.</description><identifier>ISBN: 142441685X</identifier><identifier>ISBN: 9781424416851</identifier><identifier>EISBN: 9781424416868</identifier><identifier>EISBN: 1424416868</identifier><identifier>DOI: 10.1109/ICNSC.2008.4525513</identifier><identifier>LCCN: 2007936075</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Control systems ; Control theory ; Differential equations ; Integral equations ; Nonlinear control systems ; Nonlinear equations ; Nonlinear systems ; Taylor series ; Vectors</subject><ispartof>2008 IEEE International Conference on Networking, Sensing and Control, 2008, p.1784-1787</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4525513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4525513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao Shaozhong</creatorcontrib><creatorcontrib>Yang Guowei</creatorcontrib><creatorcontrib>Tu Xuyan</creatorcontrib><title>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</title><title>2008 IEEE International Conference on Networking, Sensing and Control</title><addtitle>ICNSC</addtitle><description>Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.</description><subject>Approximation methods</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Integral equations</subject><subject>Nonlinear control systems</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Taylor series</subject><subject>Vectors</subject><isbn>142441685X</isbn><isbn>9781424416851</isbn><isbn>9781424416868</isbn><isbn>1424416868</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1Kw0AYXJGCtuYF9LIvkLh_32b3WELVQqliFLyVJfkWI2k2blKwb2_UOpdhmGFghpBrzjLOmb1dF9uyyARjJlMgALg8I4nNDVdCKa6NNudk_i_gbUbmUza3UrMcLkgyDB9sggIJIC_J07LvY_hq9m5EWob2MDaho884oIvVOw2eluOPtfo8uF_Lh0iL0I0xtC3WdBu6tummMC2Pw4j74YrMvGsHTE68IK93q5fiId083q-L5SZteA5jqpX1AlGICoSrwOYMKg5W1WCc1FLYSjqnjQKLRms0DLn3tdVK1k7rmskFufnrbRBx18dpQTzuTo_Ib3SYUqk</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Cao Shaozhong</creator><creator>Yang Guowei</creator><creator>Tu Xuyan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200804</creationdate><title>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</title><author>Cao Shaozhong ; Yang Guowei ; Tu Xuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-649f2ee22c52ac59705c1594d58a36329c3aa68459e866e80e1ffd9643da66d03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation methods</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Integral equations</topic><topic>Nonlinear control systems</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Taylor series</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao Shaozhong</creatorcontrib><creatorcontrib>Yang Guowei</creatorcontrib><creatorcontrib>Tu Xuyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao Shaozhong</au><au>Yang Guowei</au><au>Tu Xuyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximate Solution Research of State Equation for Controlled Nonlinear Systems</atitle><btitle>2008 IEEE International Conference on Networking, Sensing and Control</btitle><stitle>ICNSC</stitle><date>2008-04</date><risdate>2008</risdate><spage>1784</spage><epage>1787</epage><pages>1784-1787</pages><isbn>142441685X</isbn><isbn>9781424416851</isbn><eisbn>9781424416868</eisbn><eisbn>1424416868</eisbn><abstract>Based on the solution of the linear state equation, by making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.</abstract><pub>IEEE</pub><doi>10.1109/ICNSC.2008.4525513</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142441685X
ispartof 2008 IEEE International Conference on Networking, Sensing and Control, 2008, p.1784-1787
issn
language eng
recordid cdi_ieee_primary_4525513
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Control systems
Control theory
Differential equations
Integral equations
Nonlinear control systems
Nonlinear equations
Nonlinear systems
Taylor series
Vectors
title Approximate Solution Research of State Equation for Controlled Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximate%20Solution%20Research%20of%20State%20Equation%20for%20Controlled%20Nonlinear%20Systems&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Networking,%20Sensing%20and%20Control&rft.au=Cao%20Shaozhong&rft.date=2008-04&rft.spage=1784&rft.epage=1787&rft.pages=1784-1787&rft.isbn=142441685X&rft.isbn_list=9781424416851&rft_id=info:doi/10.1109/ICNSC.2008.4525513&rft_dat=%3Cieee_6IE%3E4525513%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416868&rft.eisbn_list=1424416868&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4525513&rfr_iscdi=true