Blind decentralized estimation for bandwidth constrained wireless sensor networks

Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2008-05, Vol.7 (5), p.1466-1471
Hauptverfasser: Aysal, T.C., Barner, K.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1471
container_issue 5
container_start_page 1466
container_title IEEE transactions on wireless communications
container_volume 7
creator Aysal, T.C.
Barner, K.E.
description Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.
doi_str_mv 10.1109/TWC.2008.060687
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4524301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4524301</ieee_id><sourcerecordid>34409506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</originalsourceid><addsrcrecordid>eNp90c9rFTEQB_AgCtZnzx68LILWy75OfuwkOerD2kJBChWPIc1OMHWbrck-HvrXm8crPXjoKYF8ZpjJl7E3HNacgz29_rFZCwCzBgQ0-hk74sNgeiGUeb6_S-y50PiSvar1FoBrHIYjdvV5SnnsRgqUl-Kn9JfGjuqS7vyS5tzFuXQ3Po-7NC4_uzDn2lTKDe1SoYlq7Srl2lSmZTeXX_U1exH9VOn44Vyx72dfrjfn_eW3rxebT5d9UFwtvdaKRyu0JxstoBRgrEUFWgEMQgZCDJ5iJLyxxgORAeWNDCgiekKSK3Zy6Htf5t_bNrK7SzXQNPlM87Y6CxIFWsWb_PCklEqBHdoMK_bxSchRc4mGK9Pou__o7bwtuS3sDEqlLXLZ0OkBhTLXWii6-9I-tvxxHNw-NNdCc_vQ3CG0VvH-oa2vwU-x-BxSfSwTIMVg22Yr9vbgEhE9PqtBKAlc_gNtjJ8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863479613</pqid></control><display><type>article</type><title>Blind decentralized estimation for bandwidth constrained wireless sensor networks</title><source>IEEE Electronic Library (IEL)</source><creator>Aysal, T.C. ; Barner, K.E.</creator><creatorcontrib>Aysal, T.C. ; Barner, K.E.</creatorcontrib><description>Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2008.060687</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Additive noise ; Applied sciences ; Bandwidth ; Blinds ; Channels ; Convergence ; Decentralized ; Distributed control ; Estimators ; Exact sciences and technology ; Mathematical models ; Maximum likelihood detection ; Maximum likelihood estimation ; Networks ; Noise ; Sensor fusion ; Sensor phenomena and characterization ; Sensors ; Services and terminals of telecommunications ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telemetry. Remote supervision. Telewarning. Remote control ; Transmission and modulation (techniques and equipments) ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2008-05, Vol.7 (5), p.1466-1471</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</citedby><cites>FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4524301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4524301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20325990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aysal, T.C.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><title>Blind decentralized estimation for bandwidth constrained wireless sensor networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.</description><subject>Additive noise</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Blinds</subject><subject>Channels</subject><subject>Convergence</subject><subject>Decentralized</subject><subject>Distributed control</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Networks</subject><subject>Noise</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Services and terminals of telecommunications</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telemetry. Remote supervision. Telewarning. Remote control</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9rFTEQB_AgCtZnzx68LILWy75OfuwkOerD2kJBChWPIc1OMHWbrck-HvrXm8crPXjoKYF8ZpjJl7E3HNacgz29_rFZCwCzBgQ0-hk74sNgeiGUeb6_S-y50PiSvar1FoBrHIYjdvV5SnnsRgqUl-Kn9JfGjuqS7vyS5tzFuXQ3Po-7NC4_uzDn2lTKDe1SoYlq7Srl2lSmZTeXX_U1exH9VOn44Vyx72dfrjfn_eW3rxebT5d9UFwtvdaKRyu0JxstoBRgrEUFWgEMQgZCDJ5iJLyxxgORAeWNDCgiekKSK3Zy6Htf5t_bNrK7SzXQNPlM87Y6CxIFWsWb_PCklEqBHdoMK_bxSchRc4mGK9Pou__o7bwtuS3sDEqlLXLZ0OkBhTLXWii6-9I-tvxxHNw-NNdCc_vQ3CG0VvH-oa2vwU-x-BxSfSwTIMVg22Yr9vbgEhE9PqtBKAlc_gNtjJ8T</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Aysal, T.C.</creator><creator>Barner, K.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080501</creationdate><title>Blind decentralized estimation for bandwidth constrained wireless sensor networks</title><author>Aysal, T.C. ; Barner, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Blinds</topic><topic>Channels</topic><topic>Convergence</topic><topic>Decentralized</topic><topic>Distributed control</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Networks</topic><topic>Noise</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Services and terminals of telecommunications</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telemetry. Remote supervision. Telewarning. Remote control</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aysal, T.C.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aysal, T.C.</au><au>Barner, K.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind decentralized estimation for bandwidth constrained wireless sensor networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>7</volume><issue>5</issue><spage>1466</spage><epage>1471</epage><pages>1466-1471</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TWC.2008.060687</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2008-05, Vol.7 (5), p.1466-1471
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_4524301
source IEEE Electronic Library (IEL)
subjects Additive noise
Applied sciences
Bandwidth
Blinds
Channels
Convergence
Decentralized
Distributed control
Estimators
Exact sciences and technology
Mathematical models
Maximum likelihood detection
Maximum likelihood estimation
Networks
Noise
Sensor fusion
Sensor phenomena and characterization
Sensors
Services and terminals of telecommunications
Studies
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Telemetry. Remote supervision. Telewarning. Remote control
Transmission and modulation (techniques and equipments)
Wireless sensor networks
title Blind decentralized estimation for bandwidth constrained wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20decentralized%20estimation%20for%20bandwidth%20constrained%20wireless%20sensor%20networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Aysal,%20T.C.&rft.date=2008-05-01&rft.volume=7&rft.issue=5&rft.spage=1466&rft.epage=1471&rft.pages=1466-1471&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2008.060687&rft_dat=%3Cproquest_RIE%3E34409506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863479613&rft_id=info:pmid/&rft_ieee_id=4524301&rfr_iscdi=true