Blind decentralized estimation for bandwidth constrained wireless sensor networks
Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2008-05, Vol.7 (5), p.1466-1471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1471 |
---|---|
container_issue | 5 |
container_start_page | 1466 |
container_title | IEEE transactions on wireless communications |
container_volume | 7 |
creator | Aysal, T.C. Barner, K.E. |
description | Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators. |
doi_str_mv | 10.1109/TWC.2008.060687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4524301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4524301</ieee_id><sourcerecordid>34409506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</originalsourceid><addsrcrecordid>eNp90c9rFTEQB_AgCtZnzx68LILWy75OfuwkOerD2kJBChWPIc1OMHWbrck-HvrXm8crPXjoKYF8ZpjJl7E3HNacgz29_rFZCwCzBgQ0-hk74sNgeiGUeb6_S-y50PiSvar1FoBrHIYjdvV5SnnsRgqUl-Kn9JfGjuqS7vyS5tzFuXQ3Po-7NC4_uzDn2lTKDe1SoYlq7Srl2lSmZTeXX_U1exH9VOn44Vyx72dfrjfn_eW3rxebT5d9UFwtvdaKRyu0JxstoBRgrEUFWgEMQgZCDJ5iJLyxxgORAeWNDCgiekKSK3Zy6Htf5t_bNrK7SzXQNPlM87Y6CxIFWsWb_PCklEqBHdoMK_bxSchRc4mGK9Pou__o7bwtuS3sDEqlLXLZ0OkBhTLXWii6-9I-tvxxHNw-NNdCc_vQ3CG0VvH-oa2vwU-x-BxSfSwTIMVg22Yr9vbgEhE9PqtBKAlc_gNtjJ8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863479613</pqid></control><display><type>article</type><title>Blind decentralized estimation for bandwidth constrained wireless sensor networks</title><source>IEEE Electronic Library (IEL)</source><creator>Aysal, T.C. ; Barner, K.E.</creator><creatorcontrib>Aysal, T.C. ; Barner, K.E.</creatorcontrib><description>Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2008.060687</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Additive noise ; Applied sciences ; Bandwidth ; Blinds ; Channels ; Convergence ; Decentralized ; Distributed control ; Estimators ; Exact sciences and technology ; Mathematical models ; Maximum likelihood detection ; Maximum likelihood estimation ; Networks ; Noise ; Sensor fusion ; Sensor phenomena and characterization ; Sensors ; Services and terminals of telecommunications ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telemetry. Remote supervision. Telewarning. Remote control ; Transmission and modulation (techniques and equipments) ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2008-05, Vol.7 (5), p.1466-1471</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</citedby><cites>FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4524301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4524301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20325990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aysal, T.C.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><title>Blind decentralized estimation for bandwidth constrained wireless sensor networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.</description><subject>Additive noise</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Blinds</subject><subject>Channels</subject><subject>Convergence</subject><subject>Decentralized</subject><subject>Distributed control</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Networks</subject><subject>Noise</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Services and terminals of telecommunications</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telemetry. Remote supervision. Telewarning. Remote control</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9rFTEQB_AgCtZnzx68LILWy75OfuwkOerD2kJBChWPIc1OMHWbrck-HvrXm8crPXjoKYF8ZpjJl7E3HNacgz29_rFZCwCzBgQ0-hk74sNgeiGUeb6_S-y50PiSvar1FoBrHIYjdvV5SnnsRgqUl-Kn9JfGjuqS7vyS5tzFuXQ3Po-7NC4_uzDn2lTKDe1SoYlq7Srl2lSmZTeXX_U1exH9VOn44Vyx72dfrjfn_eW3rxebT5d9UFwtvdaKRyu0JxstoBRgrEUFWgEMQgZCDJ5iJLyxxgORAeWNDCgiekKSK3Zy6Htf5t_bNrK7SzXQNPlM87Y6CxIFWsWb_PCklEqBHdoMK_bxSchRc4mGK9Pou__o7bwtuS3sDEqlLXLZ0OkBhTLXWii6-9I-tvxxHNw-NNdCc_vQ3CG0VvH-oa2vwU-x-BxSfSwTIMVg22Yr9vbgEhE9PqtBKAlc_gNtjJ8T</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Aysal, T.C.</creator><creator>Barner, K.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080501</creationdate><title>Blind decentralized estimation for bandwidth constrained wireless sensor networks</title><author>Aysal, T.C. ; Barner, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-7741f927ae9f9063208996407400523ce66caeffe6b98a0ee804a83c62f6ae6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Blinds</topic><topic>Channels</topic><topic>Convergence</topic><topic>Decentralized</topic><topic>Distributed control</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Networks</topic><topic>Noise</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Services and terminals of telecommunications</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telemetry. Remote supervision. Telewarning. Remote control</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aysal, T.C.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aysal, T.C.</au><au>Barner, K.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind decentralized estimation for bandwidth constrained wireless sensor networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>7</volume><issue>5</issue><spage>1466</spage><epage>1471</epage><pages>1466-1471</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TWC.2008.060687</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2008-05, Vol.7 (5), p.1466-1471 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_4524301 |
source | IEEE Electronic Library (IEL) |
subjects | Additive noise Applied sciences Bandwidth Blinds Channels Convergence Decentralized Distributed control Estimators Exact sciences and technology Mathematical models Maximum likelihood detection Maximum likelihood estimation Networks Noise Sensor fusion Sensor phenomena and characterization Sensors Services and terminals of telecommunications Studies Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Telemetry. Remote supervision. Telewarning. Remote control Transmission and modulation (techniques and equipments) Wireless sensor networks |
title | Blind decentralized estimation for bandwidth constrained wireless sensor networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20decentralized%20estimation%20for%20bandwidth%20constrained%20wireless%20sensor%20networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Aysal,%20T.C.&rft.date=2008-05-01&rft.volume=7&rft.issue=5&rft.spage=1466&rft.epage=1471&rft.pages=1466-1471&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2008.060687&rft_dat=%3Cproquest_RIE%3E34409506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863479613&rft_id=info:pmid/&rft_ieee_id=4524301&rfr_iscdi=true |