A Dual-Band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN

This paper introduces a fully integrated 2x2 two-stream MIMO radio SoC that integrates all of the functions of an 802.11n WLAN. The 0.13 mum CMOS radio SoC, which integrates two dual-band (2.4 GHz and 5 GHz) RF transceivers, analog baseband filters, data converters, digital physical layer, media acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nathawad, L., Zargari, M., Samavati, H., Mehta, S., Kheirkhahi, A., Chen, P., Gong, K., Vakili-Amini, B., Hwang, J., Chen, M., Terrovitis, M., Kaczynski, B., Limotyrakis, S., Mack, M., Gan, H., Lee, M., Abdollahi-Alibeik, S., Baytekin, B., Onodera, K., Mendis, S., Chang, A., Jen, S., Su, D., Wooley, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue
container_start_page 358
container_title
container_volume
creator Nathawad, L.
Zargari, M.
Samavati, H.
Mehta, S.
Kheirkhahi, A.
Chen, P.
Gong, K.
Vakili-Amini, B.
Hwang, J.
Chen, M.
Terrovitis, M.
Kaczynski, B.
Limotyrakis, S.
Mack, M.
Gan, H.
Lee, M.
Abdollahi-Alibeik, S.
Baytekin, B.
Onodera, K.
Mendis, S.
Chang, A.
Jen, S.
Su, D.
Wooley, B.
description This paper introduces a fully integrated 2x2 two-stream MIMO radio SoC that integrates all of the functions of an 802.11n WLAN. The 0.13 mum CMOS radio SoC, which integrates two dual-band (2.4 GHz and 5 GHz) RF transceivers, analog baseband filters, data converters, digital physical layer, media access controller, and a PCI Express interface, provides a low-cost low-power small-form-factor WLAN solution. The MIMO radio comprises two identical dual-band transceivers that share a common frequency synthesizer capable of operating in both integer-N and fractional-N modes. In 2.4 GHz mode, the transceiver uses a direct-conversion architecture with a 3.2 GHz fractional-N frequency synthesizer. Direct conversion is used primarily because of its simplicity and the area reduction it offers by eliminating the need for an IF path. A 3.2 GHz synthesizer frequency is used to avoid VCO pulling. The 3.2 GHz synthesizer output f vco is divided by two and then mixed with the original 3.2 GHz f vco to generate a 4.8 GHz frequency. This 4.8 GHz signal at twice the RF frequency is distributed to both transceivers. Within each transceiver, the 4.8 GHz signal is divided by two to generate the 2.4 GHz in-phase and quadrature LO signals. In the 5 GHz mode, the transceiver uses a sliding-IF dual-conversion architecture, in which the RF and IF LO signals are centered at 2/3 fRF and 1/3 fRF, respectively. The frequency synthesizer, operating in integer-N mode, thus provides a 3.2 GHz RF LO signal that is buffered and distributed to both transceivers. Within each transceiver a resistively loaded divide-by-two circuit is used to generate the quadrature LO signals at 1/3 fRF. The channel center frequencies in the 5 GHz band allow integer-N operation of the synthesizer with a relatively high reference frequency, thus improving the phase noise.
doi_str_mv 10.1109/ISSCC.2008.4523205
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4523205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4523205</ieee_id><sourcerecordid>4523205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-896c81b4d90547799c95de5a31dd93e9440d2e2be95dbb308a0c444f4473a5193</originalsourceid><addsrcrecordid>eNo1kM1KxDAUheMf2BnnBXSTF8h4k9w0ycJFrVULrQU74HJImxQqdSqtLnx7C46rA-fAx8ch5JrDlnOwt3ldp-lWAJgtKiEFqBOysdpwFIgCONenJBJSx8zEEJ-R1f8A6pxEwK1ksZJwSVbz_A4AysYmIncJffh2A7t3B0_TsqppmZcVfXW-H2k9prQbJ5pnWUYNiEXkQN_6KQxhnmmRvFyRi84Nc9gcc012j9kufWZF9ZSnScF6C1_M2Lg1vEFvQaHW1rZW-aCc5N5bGSwieBFEE5a6aSQYBy0idohaOrWIr8nNH7YPIew_p_7DTT_74wvyFwCXRvY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Dual-Band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nathawad, L. ; Zargari, M. ; Samavati, H. ; Mehta, S. ; Kheirkhahi, A. ; Chen, P. ; Gong, K. ; Vakili-Amini, B. ; Hwang, J. ; Chen, M. ; Terrovitis, M. ; Kaczynski, B. ; Limotyrakis, S. ; Mack, M. ; Gan, H. ; Lee, M. ; Abdollahi-Alibeik, S. ; Baytekin, B. ; Onodera, K. ; Mendis, S. ; Chang, A. ; Jen, S. ; Su, D. ; Wooley, B.</creator><creatorcontrib>Nathawad, L. ; Zargari, M. ; Samavati, H. ; Mehta, S. ; Kheirkhahi, A. ; Chen, P. ; Gong, K. ; Vakili-Amini, B. ; Hwang, J. ; Chen, M. ; Terrovitis, M. ; Kaczynski, B. ; Limotyrakis, S. ; Mack, M. ; Gan, H. ; Lee, M. ; Abdollahi-Alibeik, S. ; Baytekin, B. ; Onodera, K. ; Mendis, S. ; Chang, A. ; Jen, S. ; Su, D. ; Wooley, B.</creatorcontrib><description>This paper introduces a fully integrated 2x2 two-stream MIMO radio SoC that integrates all of the functions of an 802.11n WLAN. The 0.13 mum CMOS radio SoC, which integrates two dual-band (2.4 GHz and 5 GHz) RF transceivers, analog baseband filters, data converters, digital physical layer, media access controller, and a PCI Express interface, provides a low-cost low-power small-form-factor WLAN solution. The MIMO radio comprises two identical dual-band transceivers that share a common frequency synthesizer capable of operating in both integer-N and fractional-N modes. In 2.4 GHz mode, the transceiver uses a direct-conversion architecture with a 3.2 GHz fractional-N frequency synthesizer. Direct conversion is used primarily because of its simplicity and the area reduction it offers by eliminating the need for an IF path. A 3.2 GHz synthesizer frequency is used to avoid VCO pulling. The 3.2 GHz synthesizer output f vco is divided by two and then mixed with the original 3.2 GHz f vco to generate a 4.8 GHz frequency. This 4.8 GHz signal at twice the RF frequency is distributed to both transceivers. Within each transceiver, the 4.8 GHz signal is divided by two to generate the 2.4 GHz in-phase and quadrature LO signals. In the 5 GHz mode, the transceiver uses a sliding-IF dual-conversion architecture, in which the RF and IF LO signals are centered at 2/3 fRF and 1/3 fRF, respectively. The frequency synthesizer, operating in integer-N mode, thus provides a 3.2 GHz RF LO signal that is buffered and distributed to both transceivers. Within each transceiver a resistively loaded divide-by-two circuit is used to generate the quadrature LO signals at 1/3 fRF. The channel center frequencies in the 5 GHz band allow integer-N operation of the synthesizer with a relatively high reference frequency, thus improving the phase noise.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 1424420105</identifier><identifier>ISBN: 9781424420100</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781424420117</identifier><identifier>EISBN: 1424420113</identifier><identifier>DOI: 10.1109/ISSCC.2008.4523205</identifier><language>eng</language><publisher>IEEE</publisher><subject>Baseband ; Digital filters ; Dual band ; Frequency synthesizers ; MIMO ; Radio frequency ; RF signals ; Signal generators ; Transceivers ; Wireless LAN</subject><ispartof>2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008, p.358-619</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4523205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4523205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nathawad, L.</creatorcontrib><creatorcontrib>Zargari, M.</creatorcontrib><creatorcontrib>Samavati, H.</creatorcontrib><creatorcontrib>Mehta, S.</creatorcontrib><creatorcontrib>Kheirkhahi, A.</creatorcontrib><creatorcontrib>Chen, P.</creatorcontrib><creatorcontrib>Gong, K.</creatorcontrib><creatorcontrib>Vakili-Amini, B.</creatorcontrib><creatorcontrib>Hwang, J.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Terrovitis, M.</creatorcontrib><creatorcontrib>Kaczynski, B.</creatorcontrib><creatorcontrib>Limotyrakis, S.</creatorcontrib><creatorcontrib>Mack, M.</creatorcontrib><creatorcontrib>Gan, H.</creatorcontrib><creatorcontrib>Lee, M.</creatorcontrib><creatorcontrib>Abdollahi-Alibeik, S.</creatorcontrib><creatorcontrib>Baytekin, B.</creatorcontrib><creatorcontrib>Onodera, K.</creatorcontrib><creatorcontrib>Mendis, S.</creatorcontrib><creatorcontrib>Chang, A.</creatorcontrib><creatorcontrib>Jen, S.</creatorcontrib><creatorcontrib>Su, D.</creatorcontrib><creatorcontrib>Wooley, B.</creatorcontrib><title>A Dual-Band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN</title><title>2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers</title><addtitle>ISSCC</addtitle><description>This paper introduces a fully integrated 2x2 two-stream MIMO radio SoC that integrates all of the functions of an 802.11n WLAN. The 0.13 mum CMOS radio SoC, which integrates two dual-band (2.4 GHz and 5 GHz) RF transceivers, analog baseband filters, data converters, digital physical layer, media access controller, and a PCI Express interface, provides a low-cost low-power small-form-factor WLAN solution. The MIMO radio comprises two identical dual-band transceivers that share a common frequency synthesizer capable of operating in both integer-N and fractional-N modes. In 2.4 GHz mode, the transceiver uses a direct-conversion architecture with a 3.2 GHz fractional-N frequency synthesizer. Direct conversion is used primarily because of its simplicity and the area reduction it offers by eliminating the need for an IF path. A 3.2 GHz synthesizer frequency is used to avoid VCO pulling. The 3.2 GHz synthesizer output f vco is divided by two and then mixed with the original 3.2 GHz f vco to generate a 4.8 GHz frequency. This 4.8 GHz signal at twice the RF frequency is distributed to both transceivers. Within each transceiver, the 4.8 GHz signal is divided by two to generate the 2.4 GHz in-phase and quadrature LO signals. In the 5 GHz mode, the transceiver uses a sliding-IF dual-conversion architecture, in which the RF and IF LO signals are centered at 2/3 fRF and 1/3 fRF, respectively. The frequency synthesizer, operating in integer-N mode, thus provides a 3.2 GHz RF LO signal that is buffered and distributed to both transceivers. Within each transceiver a resistively loaded divide-by-two circuit is used to generate the quadrature LO signals at 1/3 fRF. The channel center frequencies in the 5 GHz band allow integer-N operation of the synthesizer with a relatively high reference frequency, thus improving the phase noise.</description><subject>Baseband</subject><subject>Digital filters</subject><subject>Dual band</subject><subject>Frequency synthesizers</subject><subject>MIMO</subject><subject>Radio frequency</subject><subject>RF signals</subject><subject>Signal generators</subject><subject>Transceivers</subject><subject>Wireless LAN</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>1424420105</isbn><isbn>9781424420100</isbn><isbn>9781424420117</isbn><isbn>1424420113</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1KxDAUheMf2BnnBXSTF8h4k9w0ycJFrVULrQU74HJImxQqdSqtLnx7C46rA-fAx8ch5JrDlnOwt3ldp-lWAJgtKiEFqBOysdpwFIgCONenJBJSx8zEEJ-R1f8A6pxEwK1ksZJwSVbz_A4AysYmIncJffh2A7t3B0_TsqppmZcVfXW-H2k9prQbJ5pnWUYNiEXkQN_6KQxhnmmRvFyRi84Nc9gcc012j9kufWZF9ZSnScF6C1_M2Lg1vEFvQaHW1rZW-aCc5N5bGSwieBFEE5a6aSQYBy0idohaOrWIr8nNH7YPIew_p_7DTT_74wvyFwCXRvY</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Nathawad, L.</creator><creator>Zargari, M.</creator><creator>Samavati, H.</creator><creator>Mehta, S.</creator><creator>Kheirkhahi, A.</creator><creator>Chen, P.</creator><creator>Gong, K.</creator><creator>Vakili-Amini, B.</creator><creator>Hwang, J.</creator><creator>Chen, M.</creator><creator>Terrovitis, M.</creator><creator>Kaczynski, B.</creator><creator>Limotyrakis, S.</creator><creator>Mack, M.</creator><creator>Gan, H.</creator><creator>Lee, M.</creator><creator>Abdollahi-Alibeik, S.</creator><creator>Baytekin, B.</creator><creator>Onodera, K.</creator><creator>Mendis, S.</creator><creator>Chang, A.</creator><creator>Jen, S.</creator><creator>Su, D.</creator><creator>Wooley, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200802</creationdate><title>A Dual-Band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN</title><author>Nathawad, L. ; Zargari, M. ; Samavati, H. ; Mehta, S. ; Kheirkhahi, A. ; Chen, P. ; Gong, K. ; Vakili-Amini, B. ; Hwang, J. ; Chen, M. ; Terrovitis, M. ; Kaczynski, B. ; Limotyrakis, S. ; Mack, M. ; Gan, H. ; Lee, M. ; Abdollahi-Alibeik, S. ; Baytekin, B. ; Onodera, K. ; Mendis, S. ; Chang, A. ; Jen, S. ; Su, D. ; Wooley, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-896c81b4d90547799c95de5a31dd93e9440d2e2be95dbb308a0c444f4473a5193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Baseband</topic><topic>Digital filters</topic><topic>Dual band</topic><topic>Frequency synthesizers</topic><topic>MIMO</topic><topic>Radio frequency</topic><topic>RF signals</topic><topic>Signal generators</topic><topic>Transceivers</topic><topic>Wireless LAN</topic><toplevel>online_resources</toplevel><creatorcontrib>Nathawad, L.</creatorcontrib><creatorcontrib>Zargari, M.</creatorcontrib><creatorcontrib>Samavati, H.</creatorcontrib><creatorcontrib>Mehta, S.</creatorcontrib><creatorcontrib>Kheirkhahi, A.</creatorcontrib><creatorcontrib>Chen, P.</creatorcontrib><creatorcontrib>Gong, K.</creatorcontrib><creatorcontrib>Vakili-Amini, B.</creatorcontrib><creatorcontrib>Hwang, J.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Terrovitis, M.</creatorcontrib><creatorcontrib>Kaczynski, B.</creatorcontrib><creatorcontrib>Limotyrakis, S.</creatorcontrib><creatorcontrib>Mack, M.</creatorcontrib><creatorcontrib>Gan, H.</creatorcontrib><creatorcontrib>Lee, M.</creatorcontrib><creatorcontrib>Abdollahi-Alibeik, S.</creatorcontrib><creatorcontrib>Baytekin, B.</creatorcontrib><creatorcontrib>Onodera, K.</creatorcontrib><creatorcontrib>Mendis, S.</creatorcontrib><creatorcontrib>Chang, A.</creatorcontrib><creatorcontrib>Jen, S.</creatorcontrib><creatorcontrib>Su, D.</creatorcontrib><creatorcontrib>Wooley, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nathawad, L.</au><au>Zargari, M.</au><au>Samavati, H.</au><au>Mehta, S.</au><au>Kheirkhahi, A.</au><au>Chen, P.</au><au>Gong, K.</au><au>Vakili-Amini, B.</au><au>Hwang, J.</au><au>Chen, M.</au><au>Terrovitis, M.</au><au>Kaczynski, B.</au><au>Limotyrakis, S.</au><au>Mack, M.</au><au>Gan, H.</au><au>Lee, M.</au><au>Abdollahi-Alibeik, S.</au><au>Baytekin, B.</au><au>Onodera, K.</au><au>Mendis, S.</au><au>Chang, A.</au><au>Jen, S.</au><au>Su, D.</au><au>Wooley, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Dual-Band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN</atitle><btitle>2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers</btitle><stitle>ISSCC</stitle><date>2008-02</date><risdate>2008</risdate><spage>358</spage><epage>619</epage><pages>358-619</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>1424420105</isbn><isbn>9781424420100</isbn><eisbn>9781424420117</eisbn><eisbn>1424420113</eisbn><abstract>This paper introduces a fully integrated 2x2 two-stream MIMO radio SoC that integrates all of the functions of an 802.11n WLAN. The 0.13 mum CMOS radio SoC, which integrates two dual-band (2.4 GHz and 5 GHz) RF transceivers, analog baseband filters, data converters, digital physical layer, media access controller, and a PCI Express interface, provides a low-cost low-power small-form-factor WLAN solution. The MIMO radio comprises two identical dual-band transceivers that share a common frequency synthesizer capable of operating in both integer-N and fractional-N modes. In 2.4 GHz mode, the transceiver uses a direct-conversion architecture with a 3.2 GHz fractional-N frequency synthesizer. Direct conversion is used primarily because of its simplicity and the area reduction it offers by eliminating the need for an IF path. A 3.2 GHz synthesizer frequency is used to avoid VCO pulling. The 3.2 GHz synthesizer output f vco is divided by two and then mixed with the original 3.2 GHz f vco to generate a 4.8 GHz frequency. This 4.8 GHz signal at twice the RF frequency is distributed to both transceivers. Within each transceiver, the 4.8 GHz signal is divided by two to generate the 2.4 GHz in-phase and quadrature LO signals. In the 5 GHz mode, the transceiver uses a sliding-IF dual-conversion architecture, in which the RF and IF LO signals are centered at 2/3 fRF and 1/3 fRF, respectively. The frequency synthesizer, operating in integer-N mode, thus provides a 3.2 GHz RF LO signal that is buffered and distributed to both transceivers. Within each transceiver a resistively loaded divide-by-two circuit is used to generate the quadrature LO signals at 1/3 fRF. The channel center frequencies in the 5 GHz band allow integer-N operation of the synthesizer with a relatively high reference frequency, thus improving the phase noise.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2008.4523205</doi><tpages>262</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0193-6530
ispartof 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008, p.358-619
issn 0193-6530
2376-8606
language eng
recordid cdi_ieee_primary_4523205
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Baseband
Digital filters
Dual band
Frequency synthesizers
MIMO
Radio frequency
RF signals
Signal generators
Transceivers
Wireless LAN
title A Dual-Band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Dual-Band%20CMOS%20MIMO%20Radio%20SoC%20for%20IEEE%20802.11n%20Wireless%20LAN&rft.btitle=2008%20IEEE%20International%20Solid-State%20Circuits%20Conference%20-%20Digest%20of%20Technical%20Papers&rft.au=Nathawad,%20L.&rft.date=2008-02&rft.spage=358&rft.epage=619&rft.pages=358-619&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=1424420105&rft.isbn_list=9781424420100&rft_id=info:doi/10.1109/ISSCC.2008.4523205&rft_dat=%3Cieee_6IE%3E4523205%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424420117&rft.eisbn_list=1424420113&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4523205&rfr_iscdi=true