Stream-based speaker segmentation using speaker factors and eigenvoices

This paper presents a stream-based approach for unsupervised multi-speaker conversational speech segmentation. The main idea of this work is to exploit prior knowledge about the speaker space to find a low dimensional vector of speaker factors that summarize the salient speaker characteristics. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Castaldo, F., Colibro, D., Dalmasso, E., Laface, P., Vair, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4136
container_issue
container_start_page 4133
container_title
container_volume
creator Castaldo, F.
Colibro, D.
Dalmasso, E.
Laface, P.
Vair, C.
description This paper presents a stream-based approach for unsupervised multi-speaker conversational speech segmentation. The main idea of this work is to exploit prior knowledge about the speaker space to find a low dimensional vector of speaker factors that summarize the salient speaker characteristics. This new approach produces segmentation error rates that are better than the state of the art ones reported in our previous work on the segmentation task in the NIST 2000 Speaker Recognition Evaluation (SRE). We also show how the performance of a speaker recognition system in the core test of the 2006 NIST SRE is affected, comparing the results obtained using single speaker and automatically segmented test data.
doi_str_mv 10.1109/ICASSP.2008.4518564
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4518564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4518564</ieee_id><sourcerecordid>4518564</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7df615c1bb0835ea19152d49e29dde225f348d6e26d9130a51f029c242893d673</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhcc_sNY8QTd5gYlz5yeZu5SiVSgoRMFdmWRuwqhJSiYKvn0DVs_mLD44fBzGViAyAIE3j-vbsnzOpBA20wasyfUJuwIttQZtNZ6yhVQFckDxdsYSLOwfU-qcLcBIwXPQeMmSGN_FHG2UQbNgm3IayXW8cpF8GvfkPmhMI7Ud9ZObwtCnXzH07T9qXD0NY0xd71MKLfXfQ6gpXrOLxn1GSo69ZK_3dy_rB7592sz2Wx6gMBMvfJODqaGqhFWGHODs5jWSRO9JStMobX1OMvcISjgDjZBYSy0tKp8XaslWv7uBiHb7MXRu_NkdP1EHpOJRRA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stream-based speaker segmentation using speaker factors and eigenvoices</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Castaldo, F. ; Colibro, D. ; Dalmasso, E. ; Laface, P. ; Vair, C.</creator><creatorcontrib>Castaldo, F. ; Colibro, D. ; Dalmasso, E. ; Laface, P. ; Vair, C.</creatorcontrib><description>This paper presents a stream-based approach for unsupervised multi-speaker conversational speech segmentation. The main idea of this work is to exploit prior knowledge about the speaker space to find a low dimensional vector of speaker factors that summarize the salient speaker characteristics. This new approach produces segmentation error rates that are better than the state of the art ones reported in our previous work on the segmentation task in the NIST 2000 Speaker Recognition Evaluation (SRE). We also show how the performance of a speaker recognition system in the core test of the 2006 NIST SRE is affected, comparing the results obtained using single speaker and automatically segmented test data.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4518564</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic testing ; Delay ; eigenvoices ; Error analysis ; NIST ; Performance analysis ; Signal analysis ; speaker clustering ; speaker factors ; Speaker modeling ; Speaker recognition ; speaker segmentation ; Speech ; Streaming media ; System testing</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.4133-4136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4518564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4518564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Castaldo, F.</creatorcontrib><creatorcontrib>Colibro, D.</creatorcontrib><creatorcontrib>Dalmasso, E.</creatorcontrib><creatorcontrib>Laface, P.</creatorcontrib><creatorcontrib>Vair, C.</creatorcontrib><title>Stream-based speaker segmentation using speaker factors and eigenvoices</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This paper presents a stream-based approach for unsupervised multi-speaker conversational speech segmentation. The main idea of this work is to exploit prior knowledge about the speaker space to find a low dimensional vector of speaker factors that summarize the salient speaker characteristics. This new approach produces segmentation error rates that are better than the state of the art ones reported in our previous work on the segmentation task in the NIST 2000 Speaker Recognition Evaluation (SRE). We also show how the performance of a speaker recognition system in the core test of the 2006 NIST SRE is affected, comparing the results obtained using single speaker and automatically segmented test data.</description><subject>Automatic testing</subject><subject>Delay</subject><subject>eigenvoices</subject><subject>Error analysis</subject><subject>NIST</subject><subject>Performance analysis</subject><subject>Signal analysis</subject><subject>speaker clustering</subject><subject>speaker factors</subject><subject>Speaker modeling</subject><subject>Speaker recognition</subject><subject>speaker segmentation</subject><subject>Speech</subject><subject>Streaming media</subject><subject>System testing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1Kw0AUhcc_sNY8QTd5gYlz5yeZu5SiVSgoRMFdmWRuwqhJSiYKvn0DVs_mLD44fBzGViAyAIE3j-vbsnzOpBA20wasyfUJuwIttQZtNZ6yhVQFckDxdsYSLOwfU-qcLcBIwXPQeMmSGN_FHG2UQbNgm3IayXW8cpF8GvfkPmhMI7Ud9ZObwtCnXzH07T9qXD0NY0xd71MKLfXfQ6gpXrOLxn1GSo69ZK_3dy_rB7592sz2Wx6gMBMvfJODqaGqhFWGHODs5jWSRO9JStMobX1OMvcISjgDjZBYSy0tKp8XaslWv7uBiHb7MXRu_NkdP1EHpOJRRA</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Castaldo, F.</creator><creator>Colibro, D.</creator><creator>Dalmasso, E.</creator><creator>Laface, P.</creator><creator>Vair, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Stream-based speaker segmentation using speaker factors and eigenvoices</title><author>Castaldo, F. ; Colibro, D. ; Dalmasso, E. ; Laface, P. ; Vair, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7df615c1bb0835ea19152d49e29dde225f348d6e26d9130a51f029c242893d673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automatic testing</topic><topic>Delay</topic><topic>eigenvoices</topic><topic>Error analysis</topic><topic>NIST</topic><topic>Performance analysis</topic><topic>Signal analysis</topic><topic>speaker clustering</topic><topic>speaker factors</topic><topic>Speaker modeling</topic><topic>Speaker recognition</topic><topic>speaker segmentation</topic><topic>Speech</topic><topic>Streaming media</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Castaldo, F.</creatorcontrib><creatorcontrib>Colibro, D.</creatorcontrib><creatorcontrib>Dalmasso, E.</creatorcontrib><creatorcontrib>Laface, P.</creatorcontrib><creatorcontrib>Vair, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Castaldo, F.</au><au>Colibro, D.</au><au>Dalmasso, E.</au><au>Laface, P.</au><au>Vair, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stream-based speaker segmentation using speaker factors and eigenvoices</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>4133</spage><epage>4136</epage><pages>4133-4136</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>This paper presents a stream-based approach for unsupervised multi-speaker conversational speech segmentation. The main idea of this work is to exploit prior knowledge about the speaker space to find a low dimensional vector of speaker factors that summarize the salient speaker characteristics. This new approach produces segmentation error rates that are better than the state of the art ones reported in our previous work on the segmentation task in the NIST 2000 Speaker Recognition Evaluation (SRE). We also show how the performance of a speaker recognition system in the core test of the 2006 NIST SRE is affected, comparing the results obtained using single speaker and automatically segmented test data.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4518564</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.4133-4136
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4518564
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic testing
Delay
eigenvoices
Error analysis
NIST
Performance analysis
Signal analysis
speaker clustering
speaker factors
Speaker modeling
Speaker recognition
speaker segmentation
Speech
Streaming media
System testing
title Stream-based speaker segmentation using speaker factors and eigenvoices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stream-based%20speaker%20segmentation%20using%20speaker%20factors%20and%20eigenvoices&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Castaldo,%20F.&rft.date=2008-03&rft.spage=4133&rft.epage=4136&rft.pages=4133-4136&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4518564&rft_dat=%3Cieee_6IE%3E4518564%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4518564&rfr_iscdi=true