Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks

The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Forero, P.A., Cano, A., Giannakis, G.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1992
container_issue
container_start_page 1989
container_title
container_volume
creator Forero, P.A.
Cano, A.
Giannakis, G.B.
description The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on local information available to individual sensors, while during the M-step sensors exchange information only with their one- hop neighbors to reach consensus and eventually percolate the global information needed to estimate the wanted parameters across the wireless sensor network (WSN). Analysis and simulations demonstrate that the resultant consensus-based distributed EM (CB-DEM) algorithm matches well the resource- limited characteristics of WSNs and compares favorably with existing alternatives because it has wider applicability and remains resilient to inter-sensor communication noise.
doi_str_mv 10.1109/ICASSP.2008.4518028
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4518028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4518028</ieee_id><sourcerecordid>4518028</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-de9b0a8b9dcf7432370aeb4e6f94462c4cd2ceb8bc28755ece82efe5a4d74ee53</originalsourceid><addsrcrecordid>eNo1UNtOAjEQrbdERL6Al_5Ase1O2fbREG8JiSZo4hvptrNY3QvZlgj-gL_tKjgvcz1n5gwhY8EnQnBz9TC7XiyeJpJzPQElNJf6iFwIkAACNJhjMpBZbpgw_PWEjEyu_3tZdkoGQknOpgLMORnF-M57A5Upowbke9Y2EZu4iaywET31IaYuFJvUx7hdo0s2hbZhtd2GOnz9JdRWq7YL6a2mZdtR3-ND2lGMKdSHgcZTV9kYQxncvrSJoVnRz9BhhTHS36U9tsH02XYf8ZKclbaKODr4IXm5vXme3bP5412vfs6CyFViHk3BrS6Md2UOWS-aWywAp6UBmEoHzkuHhS6c1LlS6FBLLFFZ8DkgqmxIxnvegIjLddcf3O2Wh59mP5-ibU8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Forero, P.A. ; Cano, A. ; Giannakis, G.B.</creator><creatorcontrib>Forero, P.A. ; Cano, A. ; Giannakis, G.B.</creatorcontrib><description>The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on local information available to individual sensors, while during the M-step sensors exchange information only with their one- hop neighbors to reach consensus and eventually percolate the global information needed to estimate the wanted parameters across the wireless sensor network (WSN). Analysis and simulations demonstrate that the resultant consensus-based distributed EM (CB-DEM) algorithm matches well the resource- limited characteristics of WSNs and compares favorably with existing alternatives because it has wider applicability and remains resilient to inter-sensor communication noise.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4518028</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive noise ; Closed-form solution ; Distributed Consensus ; Distributed Estimation ; Expectation-Maximization ; Expectation-maximization algorithms ; Gaussian noise ; Local government ; Maximum likelihood estimation ; Mixture ; Parameter estimation ; Sensor Networks ; Sensor phenomena and characterization ; Statistical distributions ; Wireless sensor networks</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.1989-1992</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4518028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4518028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Forero, P.A.</creatorcontrib><creatorcontrib>Cano, A.</creatorcontrib><creatorcontrib>Giannakis, G.B.</creatorcontrib><title>Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on local information available to individual sensors, while during the M-step sensors exchange information only with their one- hop neighbors to reach consensus and eventually percolate the global information needed to estimate the wanted parameters across the wireless sensor network (WSN). Analysis and simulations demonstrate that the resultant consensus-based distributed EM (CB-DEM) algorithm matches well the resource- limited characteristics of WSNs and compares favorably with existing alternatives because it has wider applicability and remains resilient to inter-sensor communication noise.</description><subject>Additive noise</subject><subject>Closed-form solution</subject><subject>Distributed Consensus</subject><subject>Distributed Estimation</subject><subject>Expectation-Maximization</subject><subject>Expectation-maximization algorithms</subject><subject>Gaussian noise</subject><subject>Local government</subject><subject>Maximum likelihood estimation</subject><subject>Mixture</subject><subject>Parameter estimation</subject><subject>Sensor Networks</subject><subject>Sensor phenomena and characterization</subject><subject>Statistical distributions</subject><subject>Wireless sensor networks</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtOAjEQrbdERL6Al_5Ase1O2fbREG8JiSZo4hvptrNY3QvZlgj-gL_tKjgvcz1n5gwhY8EnQnBz9TC7XiyeJpJzPQElNJf6iFwIkAACNJhjMpBZbpgw_PWEjEyu_3tZdkoGQknOpgLMORnF-M57A5Upowbke9Y2EZu4iaywET31IaYuFJvUx7hdo0s2hbZhtd2GOnz9JdRWq7YL6a2mZdtR3-ND2lGMKdSHgcZTV9kYQxncvrSJoVnRz9BhhTHS36U9tsH02XYf8ZKclbaKODr4IXm5vXme3bP5412vfs6CyFViHk3BrS6Md2UOWS-aWywAp6UBmEoHzkuHhS6c1LlS6FBLLFFZ8DkgqmxIxnvegIjLddcf3O2Wh59mP5-ibU8</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Forero, P.A.</creator><creator>Cano, A.</creator><creator>Giannakis, G.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks</title><author>Forero, P.A. ; Cano, A. ; Giannakis, G.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-de9b0a8b9dcf7432370aeb4e6f94462c4cd2ceb8bc28755ece82efe5a4d74ee53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Closed-form solution</topic><topic>Distributed Consensus</topic><topic>Distributed Estimation</topic><topic>Expectation-Maximization</topic><topic>Expectation-maximization algorithms</topic><topic>Gaussian noise</topic><topic>Local government</topic><topic>Maximum likelihood estimation</topic><topic>Mixture</topic><topic>Parameter estimation</topic><topic>Sensor Networks</topic><topic>Sensor phenomena and characterization</topic><topic>Statistical distributions</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Forero, P.A.</creatorcontrib><creatorcontrib>Cano, A.</creatorcontrib><creatorcontrib>Giannakis, G.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forero, P.A.</au><au>Cano, A.</au><au>Giannakis, G.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>1989</spage><epage>1992</epage><pages>1989-1992</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on local information available to individual sensors, while during the M-step sensors exchange information only with their one- hop neighbors to reach consensus and eventually percolate the global information needed to estimate the wanted parameters across the wireless sensor network (WSN). Analysis and simulations demonstrate that the resultant consensus-based distributed EM (CB-DEM) algorithm matches well the resource- limited characteristics of WSNs and compares favorably with existing alternatives because it has wider applicability and remains resilient to inter-sensor communication noise.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4518028</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.1989-1992
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4518028
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Additive noise
Closed-form solution
Distributed Consensus
Distributed Estimation
Expectation-Maximization
Expectation-maximization algorithms
Gaussian noise
Local government
Maximum likelihood estimation
Mixture
Parameter estimation
Sensor Networks
Sensor phenomena and characterization
Statistical distributions
Wireless sensor networks
title Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Consensus-based%20distributed%20expectation-maximization%20algorithm%20for%20density%20estimation%20and%20classification%20using%20wireless%20sensor%20networks&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Forero,%20P.A.&rft.date=2008-03&rft.spage=1989&rft.epage=1992&rft.pages=1989-1992&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4518028&rft_dat=%3Cieee_6IE%3E4518028%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4518028&rfr_iscdi=true