Kernel based articulated object tracking with scale adaptation and model update

Kernel based object tracking (KBOT) is one of the most popular and effective techniques for tracking task. However the constancy of the target model and unsound scale adaptation method are two main limitations. In this paper, we present a kernel based approach incorporated with scale estimation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anbang Yao, Guijin Wang, Xinggang Lin, Hao Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue
container_start_page 945
container_title
container_volume
creator Anbang Yao
Guijin Wang
Xinggang Lin
Hao Wang
description Kernel based object tracking (KBOT) is one of the most popular and effective techniques for tracking task. However the constancy of the target model and unsound scale adaptation method are two main limitations. In this paper, we present a kernel based approach incorporated with scale estimation and target model update for articulated object tracking task. After predicating the object center with scale fixed KBOT, we extend scale selection theory to estimate the local optimal object scale. Once the object scale has been estimated, a kernel density estimation based strategy is developed to update the target model. Experimental results show that our approach is superior to traditional KBOT in the following two aspects: 1) it is less affected by the object scale change; 2) it is less prone to appearance variation.
doi_str_mv 10.1109/ICASSP.2008.4517767
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4517767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4517767</ieee_id><sourcerecordid>4517767</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-70382b21bc2683aa58c43268beb0f76b10e24f885798b76f30ad0090ba56c02f3</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXG9grPmCvuwPpJ69ZXcfpXjDQoUq-FbObja6NU1CskX8ewPWeZmBYQZmCJkzWDAG9uZpebvZvCw4gFlIxbQu9Qm5YpJLyaSR9pRkXGhbMAvvZyS32vx7QpyTjCkORcmkvST5OO5gglRCWZWR9XMY2tBQh2OoKA4p-kODadKd2wWfaBrQf8X2g37H9ElHj02gWGGfMMWupdhWdN9VU8Ohr6bcNbmosRlDfuQZebu_e10-Fqv1w7RiVUSmVSo0CMMdZ87z0ghEZbwUk3TBQa1LxyBwWRujtDVOl7UArAAsOFSlB16LGZn_9cYQwrYf4h6Hn-3xG_ELUAFT5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Kernel based articulated object tracking with scale adaptation and model update</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Anbang Yao ; Guijin Wang ; Xinggang Lin ; Hao Wang</creator><creatorcontrib>Anbang Yao ; Guijin Wang ; Xinggang Lin ; Hao Wang</creatorcontrib><description>Kernel based object tracking (KBOT) is one of the most popular and effective techniques for tracking task. However the constancy of the target model and unsound scale adaptation method are two main limitations. In this paper, we present a kernel based approach incorporated with scale estimation and target model update for articulated object tracking task. After predicating the object center with scale fixed KBOT, we extend scale selection theory to estimate the local optimal object scale. Once the object scale has been estimated, a kernel density estimation based strategy is developed to update the target model. Experimental results show that our approach is superior to traditional KBOT in the following two aspects: 1) it is less affected by the object scale change; 2) it is less prone to appearance variation.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4517767</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Articulated object ; Bandwidth ; Concurrent computing ; Convergence ; Extraterrestrial measurements ; Interleaved codes ; Kernel ; Kernel based object tracking ; Kernel density estimation ; Robustness ; Scale space ; Target tracking ; Video compression</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.945-948</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4517767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4517767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Anbang Yao</creatorcontrib><creatorcontrib>Guijin Wang</creatorcontrib><creatorcontrib>Xinggang Lin</creatorcontrib><creatorcontrib>Hao Wang</creatorcontrib><title>Kernel based articulated object tracking with scale adaptation and model update</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Kernel based object tracking (KBOT) is one of the most popular and effective techniques for tracking task. However the constancy of the target model and unsound scale adaptation method are two main limitations. In this paper, we present a kernel based approach incorporated with scale estimation and target model update for articulated object tracking task. After predicating the object center with scale fixed KBOT, we extend scale selection theory to estimate the local optimal object scale. Once the object scale has been estimated, a kernel density estimation based strategy is developed to update the target model. Experimental results show that our approach is superior to traditional KBOT in the following two aspects: 1) it is less affected by the object scale change; 2) it is less prone to appearance variation.</description><subject>Adaptation model</subject><subject>Articulated object</subject><subject>Bandwidth</subject><subject>Concurrent computing</subject><subject>Convergence</subject><subject>Extraterrestrial measurements</subject><subject>Interleaved codes</subject><subject>Kernel</subject><subject>Kernel based object tracking</subject><subject>Kernel density estimation</subject><subject>Robustness</subject><subject>Scale space</subject><subject>Target tracking</subject><subject>Video compression</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKw0AUXG9grPmCvuwPpJ69ZXcfpXjDQoUq-FbObja6NU1CskX8ewPWeZmBYQZmCJkzWDAG9uZpebvZvCw4gFlIxbQu9Qm5YpJLyaSR9pRkXGhbMAvvZyS32vx7QpyTjCkORcmkvST5OO5gglRCWZWR9XMY2tBQh2OoKA4p-kODadKd2wWfaBrQf8X2g37H9ElHj02gWGGfMMWupdhWdN9VU8Ohr6bcNbmosRlDfuQZebu_e10-Fqv1w7RiVUSmVSo0CMMdZ87z0ghEZbwUk3TBQa1LxyBwWRujtDVOl7UArAAsOFSlB16LGZn_9cYQwrYf4h6Hn-3xG_ELUAFT5Q</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Anbang Yao</creator><creator>Guijin Wang</creator><creator>Xinggang Lin</creator><creator>Hao Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Kernel based articulated object tracking with scale adaptation and model update</title><author>Anbang Yao ; Guijin Wang ; Xinggang Lin ; Hao Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-70382b21bc2683aa58c43268beb0f76b10e24f885798b76f30ad0090ba56c02f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation model</topic><topic>Articulated object</topic><topic>Bandwidth</topic><topic>Concurrent computing</topic><topic>Convergence</topic><topic>Extraterrestrial measurements</topic><topic>Interleaved codes</topic><topic>Kernel</topic><topic>Kernel based object tracking</topic><topic>Kernel density estimation</topic><topic>Robustness</topic><topic>Scale space</topic><topic>Target tracking</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Anbang Yao</creatorcontrib><creatorcontrib>Guijin Wang</creatorcontrib><creatorcontrib>Xinggang Lin</creatorcontrib><creatorcontrib>Hao Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anbang Yao</au><au>Guijin Wang</au><au>Xinggang Lin</au><au>Hao Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kernel based articulated object tracking with scale adaptation and model update</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>945</spage><epage>948</epage><pages>945-948</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>Kernel based object tracking (KBOT) is one of the most popular and effective techniques for tracking task. However the constancy of the target model and unsound scale adaptation method are two main limitations. In this paper, we present a kernel based approach incorporated with scale estimation and target model update for articulated object tracking task. After predicating the object center with scale fixed KBOT, we extend scale selection theory to estimate the local optimal object scale. Once the object scale has been estimated, a kernel density estimation based strategy is developed to update the target model. Experimental results show that our approach is superior to traditional KBOT in the following two aspects: 1) it is less affected by the object scale change; 2) it is less prone to appearance variation.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4517767</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.945-948
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4517767
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
Articulated object
Bandwidth
Concurrent computing
Convergence
Extraterrestrial measurements
Interleaved codes
Kernel
Kernel based object tracking
Kernel density estimation
Robustness
Scale space
Target tracking
Video compression
title Kernel based articulated object tracking with scale adaptation and model update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kernel%20based%20articulated%20object%20tracking%20with%20scale%20adaptation%20and%20model%20update&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Anbang%20Yao&rft.date=2008-03&rft.spage=945&rft.epage=948&rft.pages=945-948&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4517767&rft_dat=%3Cieee_6IE%3E4517767%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4517767&rfr_iscdi=true