Estimation of Displacement Vector Field from Noisy Data using Maximum Likelihood Estimator

The present study proposes an approach for robust motion estimation between two successive image frames, from a degraded sequence. The method is based on generalized cross-correlation (GCC) methods, where the phase of the Fourier components is used for motion parameter estimation. This method uses &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: El Mehdi, Ismaili Aalaoui, El Haj Elhassane, Ibn
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1383
container_issue
container_start_page 1380
container_title
container_volume
creator El Mehdi, Ismaili Aalaoui
El Haj Elhassane, Ibn
description The present study proposes an approach for robust motion estimation between two successive image frames, from a degraded sequence. The method is based on generalized cross-correlation (GCC) methods, where the phase of the Fourier components is used for motion parameter estimation. This method uses "whitening" FIR filters to sharpen the cross-correlation maximum, thereby improving the accuracy of identification of the peak. The estimators of interest are the phase transform (PHAT), and the maximum likelihood (ML) estimators. For robust motion estimation it has been found that the ML estimator is particularly suited to this purpose. The accuracy of the estimators is also discussed. Significant results have been obtained for sub-pixel translation of images of different nature and across different spectral bands.
doi_str_mv 10.1109/ICECS.2007.4511256
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4511256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4511256</ieee_id><sourcerecordid>4511256</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-843800775d15b8bdc6ab3afd95f31be143c0df323ff44b10281076c1bef52bf43</originalsourceid><addsrcrecordid>eNpFUEtOwzAUNEKVoKUXgI0vkODnT-wsUZqWSgEWfITYVE5igyGJqziV6O0JIhJvMxrNaGb0ELoEEgOQ9Hqb5dljTAmRMRcAVCQnaA6ccg5MKnX6T-TrDM1_jSlVCSVnaBnCJxmPC06FOkdveRhcqwfnO-wtXrmwb3RlWtMN-MVUg-_x2pmmxrb3Lb73LhzxSg8aH4Lr3vGd_nbtocWF-zKN-_C-xlOg7y_QzOommOWEC_S8zp-y26h42GyzmyJyIMUQKc7UOFCKGkSpyrpKdMm0rVNhGZQGOKtIbRll1nJeAqEKiEyqUbKClpazBbr6y3XGmN2-H9v74256DPsBODRVvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of Displacement Vector Field from Noisy Data using Maximum Likelihood Estimator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>El Mehdi, Ismaili Aalaoui ; El Haj Elhassane, Ibn</creator><creatorcontrib>El Mehdi, Ismaili Aalaoui ; El Haj Elhassane, Ibn</creatorcontrib><description>The present study proposes an approach for robust motion estimation between two successive image frames, from a degraded sequence. The method is based on generalized cross-correlation (GCC) methods, where the phase of the Fourier components is used for motion parameter estimation. This method uses "whitening" FIR filters to sharpen the cross-correlation maximum, thereby improving the accuracy of identification of the peak. The estimators of interest are the phase transform (PHAT), and the maximum likelihood (ML) estimators. For robust motion estimation it has been found that the ML estimator is particularly suited to this purpose. The accuracy of the estimators is also discussed. Significant results have been obtained for sub-pixel translation of images of different nature and across different spectral bands.</description><identifier>ISBN: 142441377X</identifier><identifier>ISBN: 9781424413775</identifier><identifier>EISBN: 1424413788</identifier><identifier>EISBN: 9781424413782</identifier><identifier>DOI: 10.1109/ICECS.2007.4511256</identifier><identifier>LCCN: 2007928620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Degradation ; Finite impulse response filter ; Gaussian noise ; Image sequences ; Maximum likelihood estimation ; Motion estimation ; Parameter estimation ; Phase estimation ; Robustness ; Video compression</subject><ispartof>2007 14th IEEE International Conference on Electronics, Circuits and Systems, 2007, p.1380-1383</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4511256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4511256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>El Mehdi, Ismaili Aalaoui</creatorcontrib><creatorcontrib>El Haj Elhassane, Ibn</creatorcontrib><title>Estimation of Displacement Vector Field from Noisy Data using Maximum Likelihood Estimator</title><title>2007 14th IEEE International Conference on Electronics, Circuits and Systems</title><addtitle>ICECS</addtitle><description>The present study proposes an approach for robust motion estimation between two successive image frames, from a degraded sequence. The method is based on generalized cross-correlation (GCC) methods, where the phase of the Fourier components is used for motion parameter estimation. This method uses "whitening" FIR filters to sharpen the cross-correlation maximum, thereby improving the accuracy of identification of the peak. The estimators of interest are the phase transform (PHAT), and the maximum likelihood (ML) estimators. For robust motion estimation it has been found that the ML estimator is particularly suited to this purpose. The accuracy of the estimators is also discussed. Significant results have been obtained for sub-pixel translation of images of different nature and across different spectral bands.</description><subject>Degradation</subject><subject>Finite impulse response filter</subject><subject>Gaussian noise</subject><subject>Image sequences</subject><subject>Maximum likelihood estimation</subject><subject>Motion estimation</subject><subject>Parameter estimation</subject><subject>Phase estimation</subject><subject>Robustness</subject><subject>Video compression</subject><isbn>142441377X</isbn><isbn>9781424413775</isbn><isbn>1424413788</isbn><isbn>9781424413782</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUEtOwzAUNEKVoKUXgI0vkODnT-wsUZqWSgEWfITYVE5igyGJqziV6O0JIhJvMxrNaGb0ELoEEgOQ9Hqb5dljTAmRMRcAVCQnaA6ccg5MKnX6T-TrDM1_jSlVCSVnaBnCJxmPC06FOkdveRhcqwfnO-wtXrmwb3RlWtMN-MVUg-_x2pmmxrb3Lb73LhzxSg8aH4Lr3vGd_nbtocWF-zKN-_C-xlOg7y_QzOommOWEC_S8zp-y26h42GyzmyJyIMUQKc7UOFCKGkSpyrpKdMm0rVNhGZQGOKtIbRll1nJeAqEKiEyqUbKClpazBbr6y3XGmN2-H9v74256DPsBODRVvQ</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>El Mehdi, Ismaili Aalaoui</creator><creator>El Haj Elhassane, Ibn</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Estimation of Displacement Vector Field from Noisy Data using Maximum Likelihood Estimator</title><author>El Mehdi, Ismaili Aalaoui ; El Haj Elhassane, Ibn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-843800775d15b8bdc6ab3afd95f31be143c0df323ff44b10281076c1bef52bf43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Degradation</topic><topic>Finite impulse response filter</topic><topic>Gaussian noise</topic><topic>Image sequences</topic><topic>Maximum likelihood estimation</topic><topic>Motion estimation</topic><topic>Parameter estimation</topic><topic>Phase estimation</topic><topic>Robustness</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>El Mehdi, Ismaili Aalaoui</creatorcontrib><creatorcontrib>El Haj Elhassane, Ibn</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>El Mehdi, Ismaili Aalaoui</au><au>El Haj Elhassane, Ibn</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of Displacement Vector Field from Noisy Data using Maximum Likelihood Estimator</atitle><btitle>2007 14th IEEE International Conference on Electronics, Circuits and Systems</btitle><stitle>ICECS</stitle><date>2007-12</date><risdate>2007</risdate><spage>1380</spage><epage>1383</epage><pages>1380-1383</pages><isbn>142441377X</isbn><isbn>9781424413775</isbn><eisbn>1424413788</eisbn><eisbn>9781424413782</eisbn><abstract>The present study proposes an approach for robust motion estimation between two successive image frames, from a degraded sequence. The method is based on generalized cross-correlation (GCC) methods, where the phase of the Fourier components is used for motion parameter estimation. This method uses "whitening" FIR filters to sharpen the cross-correlation maximum, thereby improving the accuracy of identification of the peak. The estimators of interest are the phase transform (PHAT), and the maximum likelihood (ML) estimators. For robust motion estimation it has been found that the ML estimator is particularly suited to this purpose. The accuracy of the estimators is also discussed. Significant results have been obtained for sub-pixel translation of images of different nature and across different spectral bands.</abstract><pub>IEEE</pub><doi>10.1109/ICECS.2007.4511256</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142441377X
ispartof 2007 14th IEEE International Conference on Electronics, Circuits and Systems, 2007, p.1380-1383
issn
language eng
recordid cdi_ieee_primary_4511256
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Degradation
Finite impulse response filter
Gaussian noise
Image sequences
Maximum likelihood estimation
Motion estimation
Parameter estimation
Phase estimation
Robustness
Video compression
title Estimation of Displacement Vector Field from Noisy Data using Maximum Likelihood Estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20Displacement%20Vector%20Field%20from%20Noisy%20Data%20using%20Maximum%20Likelihood%20Estimator&rft.btitle=2007%2014th%20IEEE%20International%20Conference%20on%20Electronics,%20Circuits%20and%20Systems&rft.au=El%20Mehdi,%20Ismaili%20Aalaoui&rft.date=2007-12&rft.spage=1380&rft.epage=1383&rft.pages=1380-1383&rft.isbn=142441377X&rft.isbn_list=9781424413775&rft_id=info:doi/10.1109/ICECS.2007.4511256&rft_dat=%3Cieee_6IE%3E4511256%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413788&rft.eisbn_list=9781424413782&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4511256&rfr_iscdi=true