An Estimation of Distribution Improved Particle Swarm Optimization Algorithm

PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kulkarni, R.V., Venayagamoorthy, G.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue
container_start_page 539
container_title
container_volume
creator Kulkarni, R.V.
Venayagamoorthy, G.K.
description PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.
doi_str_mv 10.1109/ISSNIP.2007.4496900
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4496900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4496900</ieee_id><sourcerecordid>4496900</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-79d816fc52f34410e6fb5b1b4b83f9cdb509102c14fcf6b67744165abd592b5e3</originalsourceid><addsrcrecordid>eNpFUM1Kw0AYXJGCtvYJetkXSPz2P3sMtdpAsIXouWSTXV1JmrCJij690RacyzAwMwyD0IpATAjo26woHrN9TAFUzLmWGuACzQmnnBMBFC7_BaEzNP81auAK2BVaDsMbTOCCJVxdozw94s0w-rYcfXfEncN3fhiDN-9_Omv70H3YGu_LMPqqsbj4LEOLd_0U8d-nUNq8dMGPr-0NmrmyGezyzAv0fL95Wm-jfPeQrdM88kSJMVK6Toh0laCOTSvBSmeEIYabhDld1UaAJkArwl3lpJFKTS4pSlMLTY2wbIFWp15vrT30YVofvg7nK9gPeJFRJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kulkarni, R.V. ; Venayagamoorthy, G.K.</creator><creatorcontrib>Kulkarni, R.V. ; Venayagamoorthy, G.K.</creatorcontrib><description>PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.</description><identifier>ISBN: 1424415012</identifier><identifier>ISBN: 9781424415014</identifier><identifier>EISBN: 1424415020</identifier><identifier>EISBN: 9781424415021</identifier><identifier>DOI: 10.1109/ISSNIP.2007.4496900</identifier><identifier>LCCN: 2007904703</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant colony optimization ; Benchmark testing ; Electronic design automation and methodology ; Equations ; Genetic mutations ; Optimization methods ; Particle swarm optimization ; Probability distribution ; Real time systems ; Space exploration</subject><ispartof>2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007, p.539-544</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4496900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4496900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulkarni, R.V.</creatorcontrib><creatorcontrib>Venayagamoorthy, G.K.</creatorcontrib><title>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</title><title>2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information</title><addtitle>ISSNIP</addtitle><description>PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.</description><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Electronic design automation and methodology</subject><subject>Equations</subject><subject>Genetic mutations</subject><subject>Optimization methods</subject><subject>Particle swarm optimization</subject><subject>Probability distribution</subject><subject>Real time systems</subject><subject>Space exploration</subject><isbn>1424415012</isbn><isbn>9781424415014</isbn><isbn>1424415020</isbn><isbn>9781424415021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1Kw0AYXJGCtvYJetkXSPz2P3sMtdpAsIXouWSTXV1JmrCJij690RacyzAwMwyD0IpATAjo26woHrN9TAFUzLmWGuACzQmnnBMBFC7_BaEzNP81auAK2BVaDsMbTOCCJVxdozw94s0w-rYcfXfEncN3fhiDN-9_Omv70H3YGu_LMPqqsbj4LEOLd_0U8d-nUNq8dMGPr-0NmrmyGezyzAv0fL95Wm-jfPeQrdM88kSJMVK6Toh0laCOTSvBSmeEIYabhDld1UaAJkArwl3lpJFKTS4pSlMLTY2wbIFWp15vrT30YVofvg7nK9gPeJFRJA</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Kulkarni, R.V.</creator><creator>Venayagamoorthy, G.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</title><author>Kulkarni, R.V. ; Venayagamoorthy, G.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-79d816fc52f34410e6fb5b1b4b83f9cdb509102c14fcf6b67744165abd592b5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Electronic design automation and methodology</topic><topic>Equations</topic><topic>Genetic mutations</topic><topic>Optimization methods</topic><topic>Particle swarm optimization</topic><topic>Probability distribution</topic><topic>Real time systems</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, R.V.</creatorcontrib><creatorcontrib>Venayagamoorthy, G.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulkarni, R.V.</au><au>Venayagamoorthy, G.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</atitle><btitle>2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information</btitle><stitle>ISSNIP</stitle><date>2007-12</date><risdate>2007</risdate><spage>539</spage><epage>544</epage><pages>539-544</pages><isbn>1424415012</isbn><isbn>9781424415014</isbn><eisbn>1424415020</eisbn><eisbn>9781424415021</eisbn><abstract>PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.</abstract><pub>IEEE</pub><doi>10.1109/ISSNIP.2007.4496900</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424415012
ispartof 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007, p.539-544
issn
language eng
recordid cdi_ieee_primary_4496900
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ant colony optimization
Benchmark testing
Electronic design automation and methodology
Equations
Genetic mutations
Optimization methods
Particle swarm optimization
Probability distribution
Real time systems
Space exploration
title An Estimation of Distribution Improved Particle Swarm Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Estimation%20of%20Distribution%20Improved%20Particle%20Swarm%20Optimization%20Algorithm&rft.btitle=2007%203rd%20International%20Conference%20on%20Intelligent%20Sensors,%20Sensor%20Networks%20and%20Information&rft.au=Kulkarni,%20R.V.&rft.date=2007-12&rft.spage=539&rft.epage=544&rft.pages=539-544&rft.isbn=1424415012&rft.isbn_list=9781424415014&rft_id=info:doi/10.1109/ISSNIP.2007.4496900&rft_dat=%3Cieee_6IE%3E4496900%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424415020&rft.eisbn_list=9781424415021&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4496900&rfr_iscdi=true