An Estimation of Distribution Improved Particle Swarm Optimization Algorithm
PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions thro...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | |
container_start_page | 539 |
container_title | |
container_volume | |
creator | Kulkarni, R.V. Venayagamoorthy, G.K. |
description | PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks. |
doi_str_mv | 10.1109/ISSNIP.2007.4496900 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4496900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4496900</ieee_id><sourcerecordid>4496900</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-79d816fc52f34410e6fb5b1b4b83f9cdb509102c14fcf6b67744165abd592b5e3</originalsourceid><addsrcrecordid>eNpFUM1Kw0AYXJGCtvYJetkXSPz2P3sMtdpAsIXouWSTXV1JmrCJij690RacyzAwMwyD0IpATAjo26woHrN9TAFUzLmWGuACzQmnnBMBFC7_BaEzNP81auAK2BVaDsMbTOCCJVxdozw94s0w-rYcfXfEncN3fhiDN-9_Omv70H3YGu_LMPqqsbj4LEOLd_0U8d-nUNq8dMGPr-0NmrmyGezyzAv0fL95Wm-jfPeQrdM88kSJMVK6Toh0laCOTSvBSmeEIYabhDld1UaAJkArwl3lpJFKTS4pSlMLTY2wbIFWp15vrT30YVofvg7nK9gPeJFRJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kulkarni, R.V. ; Venayagamoorthy, G.K.</creator><creatorcontrib>Kulkarni, R.V. ; Venayagamoorthy, G.K.</creatorcontrib><description>PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.</description><identifier>ISBN: 1424415012</identifier><identifier>ISBN: 9781424415014</identifier><identifier>EISBN: 1424415020</identifier><identifier>EISBN: 9781424415021</identifier><identifier>DOI: 10.1109/ISSNIP.2007.4496900</identifier><identifier>LCCN: 2007904703</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant colony optimization ; Benchmark testing ; Electronic design automation and methodology ; Equations ; Genetic mutations ; Optimization methods ; Particle swarm optimization ; Probability distribution ; Real time systems ; Space exploration</subject><ispartof>2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007, p.539-544</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4496900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4496900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulkarni, R.V.</creatorcontrib><creatorcontrib>Venayagamoorthy, G.K.</creatorcontrib><title>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</title><title>2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information</title><addtitle>ISSNIP</addtitle><description>PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.</description><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Electronic design automation and methodology</subject><subject>Equations</subject><subject>Genetic mutations</subject><subject>Optimization methods</subject><subject>Particle swarm optimization</subject><subject>Probability distribution</subject><subject>Real time systems</subject><subject>Space exploration</subject><isbn>1424415012</isbn><isbn>9781424415014</isbn><isbn>1424415020</isbn><isbn>9781424415021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1Kw0AYXJGCtvYJetkXSPz2P3sMtdpAsIXouWSTXV1JmrCJij690RacyzAwMwyD0IpATAjo26woHrN9TAFUzLmWGuACzQmnnBMBFC7_BaEzNP81auAK2BVaDsMbTOCCJVxdozw94s0w-rYcfXfEncN3fhiDN-9_Omv70H3YGu_LMPqqsbj4LEOLd_0U8d-nUNq8dMGPr-0NmrmyGezyzAv0fL95Wm-jfPeQrdM88kSJMVK6Toh0laCOTSvBSmeEIYabhDld1UaAJkArwl3lpJFKTS4pSlMLTY2wbIFWp15vrT30YVofvg7nK9gPeJFRJA</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Kulkarni, R.V.</creator><creator>Venayagamoorthy, G.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</title><author>Kulkarni, R.V. ; Venayagamoorthy, G.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-79d816fc52f34410e6fb5b1b4b83f9cdb509102c14fcf6b67744165abd592b5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Electronic design automation and methodology</topic><topic>Equations</topic><topic>Genetic mutations</topic><topic>Optimization methods</topic><topic>Particle swarm optimization</topic><topic>Probability distribution</topic><topic>Real time systems</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, R.V.</creatorcontrib><creatorcontrib>Venayagamoorthy, G.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulkarni, R.V.</au><au>Venayagamoorthy, G.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Estimation of Distribution Improved Particle Swarm Optimization Algorithm</atitle><btitle>2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information</btitle><stitle>ISSNIP</stitle><date>2007-12</date><risdate>2007</risdate><spage>539</spage><epage>544</epage><pages>539-544</pages><isbn>1424415012</isbn><isbn>9781424415014</isbn><eisbn>1424415020</eisbn><eisbn>9781424415021</eisbn><abstract>PSO is a powerful evolutionary algorithm used for finding global solution to a multidimensional problem. Particles in PSO tend to re-explore already visited bad solution regions of search space because they do not learn as a whole. This is avoided by restricting particles into promising regions through probabilistic modeling of the archive of best solutions. This paper presents hybrids of estimation of distribution algorithm and two PSO variants. These algorithms are tested on benchmark functions having high dimensionalities. Results indicate that the methods strengthen the global optimization abilities of PSO and therefore, serve as attractive choices to determine solutions to optimization problems in areas including sensor networks.</abstract><pub>IEEE</pub><doi>10.1109/ISSNIP.2007.4496900</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424415012 |
ispartof | 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007, p.539-544 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4496900 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ant colony optimization Benchmark testing Electronic design automation and methodology Equations Genetic mutations Optimization methods Particle swarm optimization Probability distribution Real time systems Space exploration |
title | An Estimation of Distribution Improved Particle Swarm Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Estimation%20of%20Distribution%20Improved%20Particle%20Swarm%20Optimization%20Algorithm&rft.btitle=2007%203rd%20International%20Conference%20on%20Intelligent%20Sensors,%20Sensor%20Networks%20and%20Information&rft.au=Kulkarni,%20R.V.&rft.date=2007-12&rft.spage=539&rft.epage=544&rft.pages=539-544&rft.isbn=1424415012&rft.isbn_list=9781424415014&rft_id=info:doi/10.1109/ISSNIP.2007.4496900&rft_dat=%3Cieee_6IE%3E4496900%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424415020&rft.eisbn_list=9781424415021&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4496900&rfr_iscdi=true |