Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space
With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2008-06, Vol.24 (3), p.746-753 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 753 |
---|---|
container_issue | 3 |
container_start_page | 746 |
container_title | IEEE transactions on robotics |
container_volume | 24 |
creator | Adams, M. Tang Fan Wijesoma, W.S. Chhay Sok |
description | With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms. |
doi_str_mv | 10.1109/TRO.2008.919294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4493418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4493418</ieee_id><sourcerecordid>1496023691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</originalsourceid><addsrcrecordid>eNqF0cFuEzEQBuAVAolSOHPgYiFBT5uO7VnHc0QpFKSWSk05W5PNbNhqY4f1Bqlvj6NUPXCAky37m5HHf1W91TDTGuj87vZmZgD8jDQZwmfViSbUNaDzz8u-aUxtgfzL6lXO9wAGCexJdb1I8beMG4mTWm5Tmn72caM4rtVSNttyylOfokqd-p76_KBuOW5EXfDEqo_qej9MfW55ELXccSuvqxcdD1nePK6n1Y8vn-8WX-urm8tvi09XdYvaTvXcSYvgiJA6XhkUjVasWTkh8I68Flij6UxHcyYHa2HL3cohr1cCjW7taXV27Lsb06-95ClsyzNkGDhK2udQRnNmjo39r_SerNeWdJEf_yktIlicuwLf_wXv036MZd5gQDfONw4LOj-idkw5j9KF3dhveXwIGsIhr1DyCoe8wjGvUvHhsS0ffrQbObZ9fiozgOi9h-LeHV0vIk_XiGRRe_sHzTGcNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201568564</pqid></control><display><type>article</type><title>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</title><source>IEEE Electronic Library (IEL)</source><creator>Adams, M. ; Tang Fan ; Wijesoma, W.S. ; Chhay Sok</creator><creatorcontrib>Adams, M. ; Tang Fan ; Wijesoma, W.S. ; Chhay Sok</creatorcontrib><description>With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2008.919294</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive smoothing ; Algorithms ; anisotropic diffusion ; Anisotropic magnetoresistance ; Anisotropy ; Applied sciences ; Computational complexity ; Computer science; control theory; systems ; Control theory. Systems ; Convergence ; Diffusion ; Electric noise ; Equations ; Exact sciences and technology ; feature extraction ; Image converters ; Image segmentation ; Masks ; Mathematical models ; Noise reduction ; Predictive models ; Robotics ; Robots ; scale space ; Segmentation ; Smoothing ; Smoothing methods ; Solid modeling</subject><ispartof>IEEE transactions on robotics, 2008-06, Vol.24 (3), p.746-753</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</citedby><cites>FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4493418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4493418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20448880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, M.</creatorcontrib><creatorcontrib>Tang Fan</creatorcontrib><creatorcontrib>Wijesoma, W.S.</creatorcontrib><creatorcontrib>Chhay Sok</creatorcontrib><title>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.</description><subject>Adaptive smoothing</subject><subject>Algorithms</subject><subject>anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Diffusion</subject><subject>Electric noise</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>feature extraction</subject><subject>Image converters</subject><subject>Image segmentation</subject><subject>Masks</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Predictive models</subject><subject>Robotics</subject><subject>Robots</subject><subject>scale space</subject><subject>Segmentation</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Solid modeling</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cFuEzEQBuAVAolSOHPgYiFBT5uO7VnHc0QpFKSWSk05W5PNbNhqY4f1Bqlvj6NUPXCAky37m5HHf1W91TDTGuj87vZmZgD8jDQZwmfViSbUNaDzz8u-aUxtgfzL6lXO9wAGCexJdb1I8beMG4mTWm5Tmn72caM4rtVSNttyylOfokqd-p76_KBuOW5EXfDEqo_qej9MfW55ELXccSuvqxcdD1nePK6n1Y8vn-8WX-urm8tvi09XdYvaTvXcSYvgiJA6XhkUjVasWTkh8I68Flij6UxHcyYHa2HL3cohr1cCjW7taXV27Lsb06-95ClsyzNkGDhK2udQRnNmjo39r_SerNeWdJEf_yktIlicuwLf_wXv036MZd5gQDfONw4LOj-idkw5j9KF3dhveXwIGsIhr1DyCoe8wjGvUvHhsS0ffrQbObZ9fiozgOi9h-LeHV0vIk_XiGRRe_sHzTGcNQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Adams, M.</creator><creator>Tang Fan</creator><creator>Wijesoma, W.S.</creator><creator>Chhay Sok</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080601</creationdate><title>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</title><author>Adams, M. ; Tang Fan ; Wijesoma, W.S. ; Chhay Sok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive smoothing</topic><topic>Algorithms</topic><topic>anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Diffusion</topic><topic>Electric noise</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>feature extraction</topic><topic>Image converters</topic><topic>Image segmentation</topic><topic>Masks</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Predictive models</topic><topic>Robotics</topic><topic>Robots</topic><topic>scale space</topic><topic>Segmentation</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, M.</creatorcontrib><creatorcontrib>Tang Fan</creatorcontrib><creatorcontrib>Wijesoma, W.S.</creatorcontrib><creatorcontrib>Chhay Sok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adams, M.</au><au>Tang Fan</au><au>Wijesoma, W.S.</au><au>Chhay Sok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>24</volume><issue>3</issue><spage>746</spage><epage>753</epage><pages>746-753</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2008.919294</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2008-06, Vol.24 (3), p.746-753 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_4493418 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive smoothing Algorithms anisotropic diffusion Anisotropic magnetoresistance Anisotropy Applied sciences Computational complexity Computer science control theory systems Control theory. Systems Convergence Diffusion Electric noise Equations Exact sciences and technology feature extraction Image converters Image segmentation Masks Mathematical models Noise reduction Predictive models Robotics Robots scale space Segmentation Smoothing Smoothing methods Solid modeling |
title | Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20Smoothing%20and%20Segmentation%20of%20Noisy%20Range%20Data%20in%20Multiscale%20Space&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Adams,%20M.&rft.date=2008-06-01&rft.volume=24&rft.issue=3&rft.spage=746&rft.epage=753&rft.pages=746-753&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2008.919294&rft_dat=%3Cproquest_RIE%3E1496023691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201568564&rft_id=info:pmid/&rft_ieee_id=4493418&rfr_iscdi=true |