Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space

With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2008-06, Vol.24 (3), p.746-753
Hauptverfasser: Adams, M., Tang Fan, Wijesoma, W.S., Chhay Sok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue 3
container_start_page 746
container_title IEEE transactions on robotics
container_volume 24
creator Adams, M.
Tang Fan
Wijesoma, W.S.
Chhay Sok
description With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.
doi_str_mv 10.1109/TRO.2008.919294
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4493418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4493418</ieee_id><sourcerecordid>1496023691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</originalsourceid><addsrcrecordid>eNqF0cFuEzEQBuAVAolSOHPgYiFBT5uO7VnHc0QpFKSWSk05W5PNbNhqY4f1Bqlvj6NUPXCAky37m5HHf1W91TDTGuj87vZmZgD8jDQZwmfViSbUNaDzz8u-aUxtgfzL6lXO9wAGCexJdb1I8beMG4mTWm5Tmn72caM4rtVSNttyylOfokqd-p76_KBuOW5EXfDEqo_qej9MfW55ELXccSuvqxcdD1nePK6n1Y8vn-8WX-urm8tvi09XdYvaTvXcSYvgiJA6XhkUjVasWTkh8I68Flij6UxHcyYHa2HL3cohr1cCjW7taXV27Lsb06-95ClsyzNkGDhK2udQRnNmjo39r_SerNeWdJEf_yktIlicuwLf_wXv036MZd5gQDfONw4LOj-idkw5j9KF3dhveXwIGsIhr1DyCoe8wjGvUvHhsS0ffrQbObZ9fiozgOi9h-LeHV0vIk_XiGRRe_sHzTGcNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201568564</pqid></control><display><type>article</type><title>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</title><source>IEEE Electronic Library (IEL)</source><creator>Adams, M. ; Tang Fan ; Wijesoma, W.S. ; Chhay Sok</creator><creatorcontrib>Adams, M. ; Tang Fan ; Wijesoma, W.S. ; Chhay Sok</creatorcontrib><description>With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2008.919294</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive smoothing ; Algorithms ; anisotropic diffusion ; Anisotropic magnetoresistance ; Anisotropy ; Applied sciences ; Computational complexity ; Computer science; control theory; systems ; Control theory. Systems ; Convergence ; Diffusion ; Electric noise ; Equations ; Exact sciences and technology ; feature extraction ; Image converters ; Image segmentation ; Masks ; Mathematical models ; Noise reduction ; Predictive models ; Robotics ; Robots ; scale space ; Segmentation ; Smoothing ; Smoothing methods ; Solid modeling</subject><ispartof>IEEE transactions on robotics, 2008-06, Vol.24 (3), p.746-753</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</citedby><cites>FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4493418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4493418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20448880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, M.</creatorcontrib><creatorcontrib>Tang Fan</creatorcontrib><creatorcontrib>Wijesoma, W.S.</creatorcontrib><creatorcontrib>Chhay Sok</creatorcontrib><title>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.</description><subject>Adaptive smoothing</subject><subject>Algorithms</subject><subject>anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Diffusion</subject><subject>Electric noise</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>feature extraction</subject><subject>Image converters</subject><subject>Image segmentation</subject><subject>Masks</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Predictive models</subject><subject>Robotics</subject><subject>Robots</subject><subject>scale space</subject><subject>Segmentation</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Solid modeling</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cFuEzEQBuAVAolSOHPgYiFBT5uO7VnHc0QpFKSWSk05W5PNbNhqY4f1Bqlvj6NUPXCAky37m5HHf1W91TDTGuj87vZmZgD8jDQZwmfViSbUNaDzz8u-aUxtgfzL6lXO9wAGCexJdb1I8beMG4mTWm5Tmn72caM4rtVSNttyylOfokqd-p76_KBuOW5EXfDEqo_qej9MfW55ELXccSuvqxcdD1nePK6n1Y8vn-8WX-urm8tvi09XdYvaTvXcSYvgiJA6XhkUjVasWTkh8I68Flij6UxHcyYHa2HL3cohr1cCjW7taXV27Lsb06-95ClsyzNkGDhK2udQRnNmjo39r_SerNeWdJEf_yktIlicuwLf_wXv036MZd5gQDfONw4LOj-idkw5j9KF3dhveXwIGsIhr1DyCoe8wjGvUvHhsS0ffrQbObZ9fiozgOi9h-LeHV0vIk_XiGRRe_sHzTGcNQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Adams, M.</creator><creator>Tang Fan</creator><creator>Wijesoma, W.S.</creator><creator>Chhay Sok</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080601</creationdate><title>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</title><author>Adams, M. ; Tang Fan ; Wijesoma, W.S. ; Chhay Sok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-76ec4069949fab24e143e32b6e9086981e0d42f2f97a960dea3afb64adbe051c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive smoothing</topic><topic>Algorithms</topic><topic>anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Diffusion</topic><topic>Electric noise</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>feature extraction</topic><topic>Image converters</topic><topic>Image segmentation</topic><topic>Masks</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Predictive models</topic><topic>Robotics</topic><topic>Robots</topic><topic>scale space</topic><topic>Segmentation</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, M.</creatorcontrib><creatorcontrib>Tang Fan</creatorcontrib><creatorcontrib>Wijesoma, W.S.</creatorcontrib><creatorcontrib>Chhay Sok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adams, M.</au><au>Tang Fan</au><au>Wijesoma, W.S.</au><au>Chhay Sok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>24</volume><issue>3</issue><spage>746</spage><epage>753</epage><pages>746-753</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>With few exceptions, most of the existing noise reduction and data segmentation algorithms are only suited to image data. Therefore, an adaptive smoothing algorithm, with model-based masks, within a scale space framework is proposed for range data in this paper. This algorithm smoothes range data that conform to predefined, geometric models, while leaving other data points unaffected. The convergence of the algorithm in yielding dominant features is shown based on its compliance with the anisotropic diffusion concept. The weights of the smoothing masks are adaptively calculated according to the Mahalanobis distances between range data and model-based predictions. These behave as the diffusion coefficient in the anisotropic diffusion equation, thus satisfying the requirements of the causality criterion that no new features are introduced from fine to coarse scales. The computational complexity of this algorithm is examined and compared to that of the well-known RANSAC feature extraction algorithm. Unlike RANSAC, it has the advantage that the computational complexity is less affected by increasing the order of the model, and is independent of the number of model outliers. The proposed algorithm can be used to smooth range data in multiscale space by increasing the number of smoothing iterations. Robust, robot-occlusion-invariant features are then easily extracted from the smoothed data by least squares fitting algorithms.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2008.919294</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2008-06, Vol.24 (3), p.746-753
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_4493418
source IEEE Electronic Library (IEL)
subjects Adaptive smoothing
Algorithms
anisotropic diffusion
Anisotropic magnetoresistance
Anisotropy
Applied sciences
Computational complexity
Computer science
control theory
systems
Control theory. Systems
Convergence
Diffusion
Electric noise
Equations
Exact sciences and technology
feature extraction
Image converters
Image segmentation
Masks
Mathematical models
Noise reduction
Predictive models
Robotics
Robots
scale space
Segmentation
Smoothing
Smoothing methods
Solid modeling
title Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20Smoothing%20and%20Segmentation%20of%20Noisy%20Range%20Data%20in%20Multiscale%20Space&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Adams,%20M.&rft.date=2008-06-01&rft.volume=24&rft.issue=3&rft.spage=746&rft.epage=753&rft.pages=746-753&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2008.919294&rft_dat=%3Cproquest_RIE%3E1496023691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201568564&rft_id=info:pmid/&rft_ieee_id=4493418&rfr_iscdi=true