Quadratic Statistical MAX Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits

In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2008-05, Vol.27 (5), p.831-843
Hauptverfasser: Xin Li, Yaping Zhan, Pileggi, L.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 843
container_issue 5
container_start_page 831
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 27
creator Xin Li
Yaping Zhan
Pileggi, L.T.
description In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle multiple correlated nonnormal performance distributions, thereby providing better accuracy than the traditional techniques. Starting from a set of quadratic performance models, the proposed parametric yield estimation conceptually maps multiple correlated performance constraints to a single auxiliary constraint by using a MAX operator. As such, the parametric yield is uniquely determined by the probability distribution of the auxiliary constraint and, therefore, can easily be computed. In addition, two novel numerical algorithms are derived from moment matching and statistical Taylor expansion, respectively, to facilitate efficient quadratic statistical MAX approximation. We prove that these two algorithms are mathematically equivalent if the performance distributions are normal. Our numerical examples demonstrate that the proposed algorithm provides an error reduction of 6.5 times compared to a normal-distribution-based method while achieving a runtime speedup of 10-20 times over the Monte Carlo analysis with 10 3 samples.
doi_str_mv 10.1109/TCAD.2008.917582
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_4492835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4492835</ieee_id><sourcerecordid>10_1109_TCAD_2008_917582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4ced27b9691d85141e5b492258ccb53004914d693f5efef41910126fc7adeae03</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmNwR-KSL9DNTpO1OVZlg0lD_BsSnKosdUZRt05JJ8G3J9MQJ1v2e8_Wj7FrhBEi6PGyLG5HAiAfacxULk7YAHWaJRIVnrIBiCxPADI4ZxchfAGgVEIP2Ofz3tTe9I3lr30sIXam5Q_FOy92O999N5s47bbcdZ4_GW821Pso_miorfk0yv_2nePF1rTdevwy4_NtT-uYSjUvG2_3TR8u2ZkzbaCrvzpkb7PpsrxPFo9387JYJDYF1SfSUi2ylZ5orHOFEkmtpBZC5dauVAogNcp6olOnyJGTqBFQTJzNTE2GIB0yOOZa34XgyVU7H3_0PxVCdSBVHUhVB1LVkVS03BwtDRH9y2U8m6cq_QXiimWt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quadratic Statistical MAX Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Xin Li ; Yaping Zhan ; Pileggi, L.T.</creator><creatorcontrib>Xin Li ; Yaping Zhan ; Pileggi, L.T.</creatorcontrib><description>In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle multiple correlated nonnormal performance distributions, thereby providing better accuracy than the traditional techniques. Starting from a set of quadratic performance models, the proposed parametric yield estimation conceptually maps multiple correlated performance constraints to a single auxiliary constraint by using a MAX operator. As such, the parametric yield is uniquely determined by the probability distribution of the auxiliary constraint and, therefore, can easily be computed. In addition, two novel numerical algorithms are derived from moment matching and statistical Taylor expansion, respectively, to facilitate efficient quadratic statistical MAX approximation. We prove that these two algorithms are mathematically equivalent if the performance distributions are normal. Our numerical examples demonstrate that the proposed algorithm provides an error reduction of 6.5 times compared to a normal-distribution-based method while achieving a runtime speedup of 10-20 times over the Monte Carlo analysis with 10 3 samples.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2008.917582</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analog/RF circuits ; Approximation algorithms ; Circuits ; Distributed computing ; Large-scale systems ; MAX operator ; Monte Carlo methods ; parametric yield ; Probability distribution ; Radio frequency ; Runtime ; Taylor series ; Yield estimation</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2008-05, Vol.27 (5), p.831-843</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-4ced27b9691d85141e5b492258ccb53004914d693f5efef41910126fc7adeae03</citedby><cites>FETCH-LOGICAL-c305t-4ced27b9691d85141e5b492258ccb53004914d693f5efef41910126fc7adeae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4492835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4492835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Yaping Zhan</creatorcontrib><creatorcontrib>Pileggi, L.T.</creatorcontrib><title>Quadratic Statistical MAX Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle multiple correlated nonnormal performance distributions, thereby providing better accuracy than the traditional techniques. Starting from a set of quadratic performance models, the proposed parametric yield estimation conceptually maps multiple correlated performance constraints to a single auxiliary constraint by using a MAX operator. As such, the parametric yield is uniquely determined by the probability distribution of the auxiliary constraint and, therefore, can easily be computed. In addition, two novel numerical algorithms are derived from moment matching and statistical Taylor expansion, respectively, to facilitate efficient quadratic statistical MAX approximation. We prove that these two algorithms are mathematically equivalent if the performance distributions are normal. Our numerical examples demonstrate that the proposed algorithm provides an error reduction of 6.5 times compared to a normal-distribution-based method while achieving a runtime speedup of 10-20 times over the Monte Carlo analysis with 10 3 samples.</description><subject>Analog/RF circuits</subject><subject>Approximation algorithms</subject><subject>Circuits</subject><subject>Distributed computing</subject><subject>Large-scale systems</subject><subject>MAX operator</subject><subject>Monte Carlo methods</subject><subject>parametric yield</subject><subject>Probability distribution</subject><subject>Radio frequency</subject><subject>Runtime</subject><subject>Taylor series</subject><subject>Yield estimation</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmNwR-KSL9DNTpO1OVZlg0lD_BsSnKosdUZRt05JJ8G3J9MQJ1v2e8_Wj7FrhBEi6PGyLG5HAiAfacxULk7YAHWaJRIVnrIBiCxPADI4ZxchfAGgVEIP2Ofz3tTe9I3lr30sIXam5Q_FOy92O999N5s47bbcdZ4_GW821Pso_miorfk0yv_2nePF1rTdevwy4_NtT-uYSjUvG2_3TR8u2ZkzbaCrvzpkb7PpsrxPFo9387JYJDYF1SfSUi2ylZ5orHOFEkmtpBZC5dauVAogNcp6olOnyJGTqBFQTJzNTE2GIB0yOOZa34XgyVU7H3_0PxVCdSBVHUhVB1LVkVS03BwtDRH9y2U8m6cq_QXiimWt</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Xin Li</creator><creator>Yaping Zhan</creator><creator>Pileggi, L.T.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200805</creationdate><title>Quadratic Statistical MAX Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits</title><author>Xin Li ; Yaping Zhan ; Pileggi, L.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4ced27b9691d85141e5b492258ccb53004914d693f5efef41910126fc7adeae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analog/RF circuits</topic><topic>Approximation algorithms</topic><topic>Circuits</topic><topic>Distributed computing</topic><topic>Large-scale systems</topic><topic>MAX operator</topic><topic>Monte Carlo methods</topic><topic>parametric yield</topic><topic>Probability distribution</topic><topic>Radio frequency</topic><topic>Runtime</topic><topic>Taylor series</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Yaping Zhan</creatorcontrib><creatorcontrib>Pileggi, L.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin Li</au><au>Yaping Zhan</au><au>Pileggi, L.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Statistical MAX Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2008-05</date><risdate>2008</risdate><volume>27</volume><issue>5</issue><spage>831</spage><epage>843</epage><pages>831-843</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle multiple correlated nonnormal performance distributions, thereby providing better accuracy than the traditional techniques. Starting from a set of quadratic performance models, the proposed parametric yield estimation conceptually maps multiple correlated performance constraints to a single auxiliary constraint by using a MAX operator. As such, the parametric yield is uniquely determined by the probability distribution of the auxiliary constraint and, therefore, can easily be computed. In addition, two novel numerical algorithms are derived from moment matching and statistical Taylor expansion, respectively, to facilitate efficient quadratic statistical MAX approximation. We prove that these two algorithms are mathematically equivalent if the performance distributions are normal. Our numerical examples demonstrate that the proposed algorithm provides an error reduction of 6.5 times compared to a normal-distribution-based method while achieving a runtime speedup of 10-20 times over the Monte Carlo analysis with 10 3 samples.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2008.917582</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2008-05, Vol.27 (5), p.831-843
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_4492835
source IEEE Electronic Library (IEL)
subjects Analog/RF circuits
Approximation algorithms
Circuits
Distributed computing
Large-scale systems
MAX operator
Monte Carlo methods
parametric yield
Probability distribution
Radio frequency
Runtime
Taylor series
Yield estimation
title Quadratic Statistical MAX Approximation for Parametric Yield Estimation of Analog/RF Integrated Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Statistical%20MAX%20Approximation%20for%20Parametric%20Yield%20Estimation%20of%20Analog/RF%20Integrated%20Circuits&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Xin%20Li&rft.date=2008-05&rft.volume=27&rft.issue=5&rft.spage=831&rft.epage=843&rft.pages=831-843&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2008.917582&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2008_917582%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4492835&rfr_iscdi=true