The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles

The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2008-06, Vol.57 (2), p.260-266
Hauptverfasser: Yili Hong, Meeker, W.Q., Escobar, L.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 2
container_start_page 260
container_title IEEE transactions on reliability
container_volume 57
creator Yili Hong
Meeker, W.Q.
Escobar, L.A.
description The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.
doi_str_mv 10.1109/TR.2008.920352
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4488172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4488172</ieee_id><sourcerecordid>36352887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</originalsourceid><addsrcrecordid>eNp9kc9r2zAUx8XoYGnWay-9iB62kzP9siUdu9BsgcDa4LuQ7Sei4MipZK_0v6-Cxw477PR48Pk-eN8PQreUrCgl-lu9XzFC1Eozwkv2AS1oWaqCSkav0IIQqgpdMv0JXad0zKsQWi2QqQ-A99Db0Q8hHfwZf4fxFSDg9RCc7yC0gLdhhPjb9gm7IeKN9f0UAT_FobGN7_3oIWEbOrzzDnDtT4CfJxtG30P6jD66HISbP3OJ6s1jvf5Z7H792K4fdkXLlR4L12gqhbSSN0Q0LbTcClFpThroiBIOOskaK5nlFe2ka9uqtMqWQjvRaVB8ib7OZ89xeJkgjebkUwt9bwMMUzJKlqTkgl_IL_8leZXLU0pm8P4f8DhMMeQnjKoYFblMlqHVDLVxSCmCM-foTza-GUrMxYqp9-ZixcxWcuBuDngA-AsLoVQWxd8BheSIbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862149522</pqid></control><display><type>article</type><title>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</title><source>IEEE Electronic Library (IEL)</source><creator>Yili Hong ; Meeker, W.Q. ; Escobar, L.A.</creator><creatorcontrib>Yili Hong ; Meeker, W.Q. ; Escobar, L.A.</creatorcontrib><description>The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2008.920352</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Asymptotic approximation ; Ball bearings ; Bands ; Confidence ; confidence bands ; Confidence intervals ; Data analysis ; Distribution functions ; Estimators ; Failure ; life data analysis ; Life estimation ; likelihood confidence interval ; Mathematical analysis ; maximum likelihood ; Maximum likelihood estimation ; Probability ; Quantiles ; Random variables ; s -normal approximation ; Statistics ; Studies ; Warranties</subject><ispartof>IEEE transactions on reliability, 2008-06, Vol.57 (2), p.260-266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</citedby><cites>FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4488172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4488172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yili Hong</creatorcontrib><creatorcontrib>Meeker, W.Q.</creatorcontrib><creatorcontrib>Escobar, L.A.</creatorcontrib><title>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.</description><subject>Approximation</subject><subject>Asymptotic approximation</subject><subject>Ball bearings</subject><subject>Bands</subject><subject>Confidence</subject><subject>confidence bands</subject><subject>Confidence intervals</subject><subject>Data analysis</subject><subject>Distribution functions</subject><subject>Estimators</subject><subject>Failure</subject><subject>life data analysis</subject><subject>Life estimation</subject><subject>likelihood confidence interval</subject><subject>Mathematical analysis</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Probability</subject><subject>Quantiles</subject><subject>Random variables</subject><subject>s -normal approximation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Warranties</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9r2zAUx8XoYGnWay-9iB62kzP9siUdu9BsgcDa4LuQ7Sei4MipZK_0v6-Cxw477PR48Pk-eN8PQreUrCgl-lu9XzFC1Eozwkv2AS1oWaqCSkav0IIQqgpdMv0JXad0zKsQWi2QqQ-A99Db0Q8hHfwZf4fxFSDg9RCc7yC0gLdhhPjb9gm7IeKN9f0UAT_FobGN7_3oIWEbOrzzDnDtT4CfJxtG30P6jD66HISbP3OJ6s1jvf5Z7H792K4fdkXLlR4L12gqhbSSN0Q0LbTcClFpThroiBIOOskaK5nlFe2ka9uqtMqWQjvRaVB8ib7OZ89xeJkgjebkUwt9bwMMUzJKlqTkgl_IL_8leZXLU0pm8P4f8DhMMeQnjKoYFblMlqHVDLVxSCmCM-foTza-GUrMxYqp9-ZixcxWcuBuDngA-AsLoVQWxd8BheSIbA</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Yili Hong</creator><creator>Meeker, W.Q.</creator><creator>Escobar, L.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080601</creationdate><title>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</title><author>Yili Hong ; Meeker, W.Q. ; Escobar, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Asymptotic approximation</topic><topic>Ball bearings</topic><topic>Bands</topic><topic>Confidence</topic><topic>confidence bands</topic><topic>Confidence intervals</topic><topic>Data analysis</topic><topic>Distribution functions</topic><topic>Estimators</topic><topic>Failure</topic><topic>life data analysis</topic><topic>Life estimation</topic><topic>likelihood confidence interval</topic><topic>Mathematical analysis</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Probability</topic><topic>Quantiles</topic><topic>Random variables</topic><topic>s -normal approximation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Warranties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yili Hong</creatorcontrib><creatorcontrib>Meeker, W.Q.</creatorcontrib><creatorcontrib>Escobar, L.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yili Hong</au><au>Meeker, W.Q.</au><au>Escobar, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>57</volume><issue>2</issue><spage>260</spage><epage>266</epage><pages>260-266</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2008.920352</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2008-06, Vol.57 (2), p.260-266
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_4488172
source IEEE Electronic Library (IEL)
subjects Approximation
Asymptotic approximation
Ball bearings
Bands
Confidence
confidence bands
Confidence intervals
Data analysis
Distribution functions
Estimators
Failure
life data analysis
Life estimation
likelihood confidence interval
Mathematical analysis
maximum likelihood
Maximum likelihood estimation
Probability
Quantiles
Random variables
s -normal approximation
Statistics
Studies
Warranties
title The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relationship%20Between%20Confidence%20Intervals%20for%20Failure%20Probabilities%20and%20Life%20Time%20Quantiles&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Yili%20Hong&rft.date=2008-06-01&rft.volume=57&rft.issue=2&rft.spage=260&rft.epage=266&rft.pages=260-266&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2008.920352&rft_dat=%3Cproquest_RIE%3E36352887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862149522&rft_id=info:pmid/&rft_ieee_id=4488172&rfr_iscdi=true