The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles
The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2008-06, Vol.57 (2), p.260-266 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | 2 |
container_start_page | 260 |
container_title | IEEE transactions on reliability |
container_volume | 57 |
creator | Yili Hong Meeker, W.Q. Escobar, L.A. |
description | The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously. |
doi_str_mv | 10.1109/TR.2008.920352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4488172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4488172</ieee_id><sourcerecordid>36352887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</originalsourceid><addsrcrecordid>eNp9kc9r2zAUx8XoYGnWay-9iB62kzP9siUdu9BsgcDa4LuQ7Sei4MipZK_0v6-Cxw477PR48Pk-eN8PQreUrCgl-lu9XzFC1Eozwkv2AS1oWaqCSkav0IIQqgpdMv0JXad0zKsQWi2QqQ-A99Db0Q8hHfwZf4fxFSDg9RCc7yC0gLdhhPjb9gm7IeKN9f0UAT_FobGN7_3oIWEbOrzzDnDtT4CfJxtG30P6jD66HISbP3OJ6s1jvf5Z7H792K4fdkXLlR4L12gqhbSSN0Q0LbTcClFpThroiBIOOskaK5nlFe2ka9uqtMqWQjvRaVB8ib7OZ89xeJkgjebkUwt9bwMMUzJKlqTkgl_IL_8leZXLU0pm8P4f8DhMMeQnjKoYFblMlqHVDLVxSCmCM-foTza-GUrMxYqp9-ZixcxWcuBuDngA-AsLoVQWxd8BheSIbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862149522</pqid></control><display><type>article</type><title>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</title><source>IEEE Electronic Library (IEL)</source><creator>Yili Hong ; Meeker, W.Q. ; Escobar, L.A.</creator><creatorcontrib>Yili Hong ; Meeker, W.Q. ; Escobar, L.A.</creatorcontrib><description>The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2008.920352</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Asymptotic approximation ; Ball bearings ; Bands ; Confidence ; confidence bands ; Confidence intervals ; Data analysis ; Distribution functions ; Estimators ; Failure ; life data analysis ; Life estimation ; likelihood confidence interval ; Mathematical analysis ; maximum likelihood ; Maximum likelihood estimation ; Probability ; Quantiles ; Random variables ; s -normal approximation ; Statistics ; Studies ; Warranties</subject><ispartof>IEEE transactions on reliability, 2008-06, Vol.57 (2), p.260-266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</citedby><cites>FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4488172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4488172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yili Hong</creatorcontrib><creatorcontrib>Meeker, W.Q.</creatorcontrib><creatorcontrib>Escobar, L.A.</creatorcontrib><title>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.</description><subject>Approximation</subject><subject>Asymptotic approximation</subject><subject>Ball bearings</subject><subject>Bands</subject><subject>Confidence</subject><subject>confidence bands</subject><subject>Confidence intervals</subject><subject>Data analysis</subject><subject>Distribution functions</subject><subject>Estimators</subject><subject>Failure</subject><subject>life data analysis</subject><subject>Life estimation</subject><subject>likelihood confidence interval</subject><subject>Mathematical analysis</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Probability</subject><subject>Quantiles</subject><subject>Random variables</subject><subject>s -normal approximation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Warranties</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9r2zAUx8XoYGnWay-9iB62kzP9siUdu9BsgcDa4LuQ7Sei4MipZK_0v6-Cxw477PR48Pk-eN8PQreUrCgl-lu9XzFC1Eozwkv2AS1oWaqCSkav0IIQqgpdMv0JXad0zKsQWi2QqQ-A99Db0Q8hHfwZf4fxFSDg9RCc7yC0gLdhhPjb9gm7IeKN9f0UAT_FobGN7_3oIWEbOrzzDnDtT4CfJxtG30P6jD66HISbP3OJ6s1jvf5Z7H792K4fdkXLlR4L12gqhbSSN0Q0LbTcClFpThroiBIOOskaK5nlFe2ka9uqtMqWQjvRaVB8ib7OZ89xeJkgjebkUwt9bwMMUzJKlqTkgl_IL_8leZXLU0pm8P4f8DhMMeQnjKoYFblMlqHVDLVxSCmCM-foTza-GUrMxYqp9-ZixcxWcuBuDngA-AsLoVQWxd8BheSIbA</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Yili Hong</creator><creator>Meeker, W.Q.</creator><creator>Escobar, L.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080601</creationdate><title>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</title><author>Yili Hong ; Meeker, W.Q. ; Escobar, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fb91747a73b04bcec3a446930bed084fed72ba72a361d7fcc65a8a549f4d9e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Asymptotic approximation</topic><topic>Ball bearings</topic><topic>Bands</topic><topic>Confidence</topic><topic>confidence bands</topic><topic>Confidence intervals</topic><topic>Data analysis</topic><topic>Distribution functions</topic><topic>Estimators</topic><topic>Failure</topic><topic>life data analysis</topic><topic>Life estimation</topic><topic>likelihood confidence interval</topic><topic>Mathematical analysis</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Probability</topic><topic>Quantiles</topic><topic>Random variables</topic><topic>s -normal approximation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Warranties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yili Hong</creatorcontrib><creatorcontrib>Meeker, W.Q.</creatorcontrib><creatorcontrib>Escobar, L.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yili Hong</au><au>Meeker, W.Q.</au><au>Escobar, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>57</volume><issue>2</issue><spage>260</spage><epage>266</epage><pages>260-266</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The failure probability of a product F ( t ), and the life time quantile t p are commonly used metrics in reliability applications. Confidence intervals are used to quantify the s -uncertainty of estimators of these two metrics. In practice, a set of pointwise confidence intervals for F ( t ), or the quantiles t p are often plotted on one graph, which we refer to as pointwise ldquoconfidence bands.rdquo These confidence bands for F ( t ) or t p can be obtained through s -normal approximation, maximum likelihood, or other procedures. In this paper, we compare s -normal approximation to likelihood methods, and introduce a new procedure to get the confidence intervals for F ( t ) by inverting the pointwise confidence bands of the quantile t p function. We show why it is valid to interpret the set of pointwise confidence intervals for the quantile function as a set of pointwise confidence intervals for F ( t ), and vice-versa. Our results also indicate that the likelihood-based pointwise confidence bands have desirable statistical properties, beyond those that were known previously.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2008.920352</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2008-06, Vol.57 (2), p.260-266 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_ieee_primary_4488172 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Asymptotic approximation Ball bearings Bands Confidence confidence bands Confidence intervals Data analysis Distribution functions Estimators Failure life data analysis Life estimation likelihood confidence interval Mathematical analysis maximum likelihood Maximum likelihood estimation Probability Quantiles Random variables s -normal approximation Statistics Studies Warranties |
title | The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relationship%20Between%20Confidence%20Intervals%20for%20Failure%20Probabilities%20and%20Life%20Time%20Quantiles&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Yili%20Hong&rft.date=2008-06-01&rft.volume=57&rft.issue=2&rft.spage=260&rft.epage=266&rft.pages=260-266&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2008.920352&rft_dat=%3Cproquest_RIE%3E36352887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862149522&rft_id=info:pmid/&rft_ieee_id=4488172&rfr_iscdi=true |